language-iconOld Web
English
Sign In

Statistical mechanics

Statistical mechanics is one of the pillars of modern physics. It is necessary for the fundamental study of any physical system that has a large number of degrees of freedom. The approach is based on statistical methods, probability theory and the microscopic physical laws. It can be used to explain the thermodynamic behaviour of large systems. This branch of statistical mechanics, which treats and extends classical thermodynamics, is known as statistical thermodynamics or equilibrium statistical mechanics. Statistical mechanics shows how the concepts from macroscopic observations (such as temperature and pressure) are related to the description of microscopic state that fluctuates around an average state. It connects thermodynamic quantities (such as heat capacity) to microscopic behavior, whereas, in classical thermodynamics, the only available option would be to measure and tabulate such quantities for various materials. Statistical mechanics can also be used to study systems that are out of equilibrium. An important subbranch known as non-equilibrium statistical mechanics deals with the issue of microscopically modelling the speed of irreversible processes that are driven by imbalances. Examples of such processes include chemical reactions or flows of particles and heat. The fluctuation–dissipation theorem is the basic knowledge obtained from applying non-equilibrium statistical mechanics to study the simplest non-equilibrium situation of a steady state current flow in a system of many particles. In physics, there are two types of mechanics usually examined: classical mechanics and quantum mechanics. For both types of mechanics, the standard mathematical approach is to consider two concepts:

[ "Quantum mechanics", "Thermodynamics", "Statistical physics", "Thermal physics", "Jarzynski equality", "Hard hexagon model", "Tsallis statistics", "Entropy (statistical thermodynamics)" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map