language-iconOld Web
English
Sign In

Ectomycorrhizae

An ectomycorrhiza (from Greek ἐκτός ektos, 'outside', μύκης mykes, 'fungus', and ῥίζα rhiza, 'root'; pl. ectomycorrhizas or ectomycorrhizae, abbreviated EcM) is a form of symbiotic relationship that occurs between a fungal symbiont, or mycobiont, and the roots of various plant species. The mycobiont is often from the phyla Basidiomycota and Ascomycota, and more rarely from the Zygomycota. Ectomycorrhizas form on the roots of around 2% of plant species, usually woody plants, including species from the birch, dipterocarp, myrtle, beech, willow, pine, Douglas fir and rose families. Research on ectomycorrhizas is increasingly important in areas such as ecosystem management and restoration, forestry and agriculture. An ectomycorrhiza (from Greek ἐκτός ektos, 'outside', μύκης mykes, 'fungus', and ῥίζα rhiza, 'root'; pl. ectomycorrhizas or ectomycorrhizae, abbreviated EcM) is a form of symbiotic relationship that occurs between a fungal symbiont, or mycobiont, and the roots of various plant species. The mycobiont is often from the phyla Basidiomycota and Ascomycota, and more rarely from the Zygomycota. Ectomycorrhizas form on the roots of around 2% of plant species, usually woody plants, including species from the birch, dipterocarp, myrtle, beech, willow, pine, Douglas fir and rose families. Research on ectomycorrhizas is increasingly important in areas such as ecosystem management and restoration, forestry and agriculture. Unlike other mycorrhizal relationships, such as arbuscular mycorrhiza and ericoid mycorrhiza, ectomycorrhizal fungi do not penetrate their host's cell walls. Instead they form an entirely intercellular interface known as the Hartig net, consisting of highly branched hyphae forming a latticework between epidermal and cortical root cells. Ectomycorrhizas are further differentiated from other mycorrhizas by the formation of a dense hyphal sheath, known as the mantle, surrounding the root surface. This sheathing mantle can be up to 40 µm thick, with hyphae extending up to several centimeters into the surrounding soil. The hyphal network helps the plant to take up nutrients including water and minerals, often helping the host plant to survive adverse conditions. In exchange, the fungal symbiont is provided with access to carbohydrates. Well known EcM fungal fruiting bodies include the economically important and edible truffle (Tuber) and the deadly death caps and destroying angels (Amanita). Mycorrhizal symbioses are ubiquitous in terrestrial ecosystems, and it is possible that these associations helped to facilitate land colonization by plants. There is paleobiological and molecular evidence that arbuscular mycorrhizas (AM) originated at least 460 million years ago. EcM plants and fungi exhibit a wide taxonomic distribution across all continents (apart from Antarctica), suggesting that the EcM symbiosis has ancient evolutionary roots. Pinaceae is the oldest extant plant family in which symbiosis with EcM fungi occurs, and fossils from this family date back to 156 million years ago. It has been proposed that habitat type and the distinct functions of different mycorrhizas help determine which type of symbiosis is predominant in a given area. In this theory, EcM symbioses evolved in ecosystems such as boreal forests that are relatively productive but in which nutrient cycling is still limiting. Ectomycorrhizas are intermediate in their ability to take up nutrients, being more efficient than arbuscular mycorrhizas and less so than ericoid mycorrhizas, making them useful in an intermediate nutrient situation. Fungi are composed of soft tissues, making fossilization difficult and the discovery of fungal fossils rare. However, some exquisitely preserved specimens have been discovered in the middle Eocene Princeton Chert of British Columbia. These ectomycorrhizal fossils show clear evidence of a Hartig net, mantle and hyphae, demonstrating well-established EcM associations at least 50 million years ago. The fossil record shows that the more common arbuscular mycorrhizas formed long before other types of fungal-plant symbioses. Ectomycorrhizas may have evolved with the diversification of plants and the evolution of conifers and angiosperms. Arbuscular mycorrhizas may thus have been a driving force in the plant colonization of land, while ectomycorrhizas may have arisen either in response to further speciation as the earth's climate became more seasonal and arid, or perhaps simply in response to nutritionally deficient habitats.

[ "Mycorrhiza", "Ectomycorrhiza", "Alpova diplophloeus", "Amphinema byssoides" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map