language-iconOld Web
English
Sign In

Chlorella

Chlorella is a genus of single-celled green algae belonging to the division Chlorophyta. It is spherical in shape, about 2 to 10 μm in diameter, and is without flagella. Chlorella contains the green photosynthetic pigments chlorophyll-a and -b in its chloroplast. Through photosynthesis, it multiplies rapidly, requiring only carbon dioxide, water, sunlight, and a small amount of minerals to reproduce. The name Chlorella is taken from the Greek χλώρος, chloros, meaning green, and the Latin diminutive suffix ella, meaning small. German biochemist and cell physiologist Otto Heinrich Warburg, awarded with the Nobel Prize in Physiology or Medicine in 1931 for his research on cell respiration, also studied photosynthesis in Chlorella. In 1961, Melvin Calvin of the University of California received the Nobel Prize in Chemistry for his research on the pathways of carbon dioxide assimilation in plants using Chlorella. Many people believe Chlorella can serve as a potential source of food and energy because its photosynthetic efficiency can, in theory, reach 8%, which exceeds that of other highly efficient crops such as sugar cane. Chlorella is a potential food source because it is high in protein and other essential nutrients; when dried, it is about 45% protein, 20% fat, 20% carbohydrate, 5% fiber, and 10% minerals and vitamins. Mass-production methods are now being used to cultivate it in large man-made circular ponds. It is commonly used as a 'superfood' and can be found as an ingredient in certain liquid-based cocktails. When first harvested, Chlorella was suggested as an inexpensive protein supplement to the human diet. Advocates sometimes focus on other supposed health benefits of the algae, such as claims of weight control, cancer prevention, and immune system support. According to the American Cancer Society, 'available scientific studies do not support its effectiveness for preventing or treating cancer or any other disease in humans'. Under certain growing conditions, Chlorella yields oils that are high in polyunsaturated fats—Chlorella minutissima has yielded eicosapentaenoic acid at 39.9% of total lipids. Following global fears of an uncontrollable human population boom during the late 1940s and the early 1950s, Chlorella was seen as a new and promising primary food source and as a possible solution to the then-current world hunger crisis. Many people during this time thought hunger would be an overwhelming problem and saw Chlorella as a way to end this crisis by providing large amounts of high-quality food for a relatively low cost. Many institutions began to research the algae, including the Carnegie Institution, the Rockefeller Foundation, the NIH, UC Berkeley, the Atomic Energy Commission, and Stanford University. Following World War II, many Europeans were starving, and many Malthusians attributed this not only to the war, but also to the inability of the world to produce enough food to support the increasing population. According to a 1946 FAO report, the world would need to produce 25 to 35% more food in 1960 than in 1939 to keep up with the increasing population, while health improvements would require a 90 to 100% increase. Because meat was costly and energy-intensive to produce, protein shortages were also an issue. Increasing cultivated area alone would go only so far in providing adequate nutrition to the population. The USDA calculated that, to feed the U.S. population by 1975, it would have to add 200 million acres (800,000 km²) of land, but only 45 million were available. One way to combat national food shortages was to increase the land available for farmers, yet the American frontier and farm land had long since been extinguished in trade for expansion and urban life. Hopes rested solely on new agricultural techniques and technologies. Because of these circumstances, an alternative solution was needed.

[ "Algae", "Chlorella salina", "Nannochloris", "Parachlorella", "Chlorella virus", "Neochloris" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map