language-icon Old Web
English
Sign In

Acid sulfate soil

Acid sulfate soils are naturally occurring soils, sediments or organic substrates (e.g. peat) that are formed under waterlogged conditions. These soils contain iron sulfide minerals (predominantly as the mineral pyrite) or their oxidation products. In an undisturbed state below the water table, acid sulfate soils are benign. However, if the soils are drained, excavated or exposed to air by a lowering of the water table, the sulfides react with oxygen to form sulfuric acid. Acid sulfate soils are naturally occurring soils, sediments or organic substrates (e.g. peat) that are formed under waterlogged conditions. These soils contain iron sulfide minerals (predominantly as the mineral pyrite) or their oxidation products. In an undisturbed state below the water table, acid sulfate soils are benign. However, if the soils are drained, excavated or exposed to air by a lowering of the water table, the sulfides react with oxygen to form sulfuric acid. Release of this sulfuric acid from the soil can in turn release iron, aluminium, and other heavy metals (particularly arsenic) within the soil. Once mobilized in this way, the acid and metals can create a variety of adverse impacts: killing vegetation, seeping into and acidifying groundwater and surface water bodies, killing fish and other aquatic organisms, and degrading concrete and steel structures to the point of failure. The soils and sediments most prone to becoming acid sulfate soils formed within the last 10,000 years, after the last major sea level rise. When the sea level rose and inundated the land, sulfate in the seawater mixed with land sediments containing iron oxides and organic matter. Under these anaerobic conditions, lithotrophic bacteria such as Desulfovibrio desulfuricans obtain oxygen for respiration through the reduction of sulfate ions in sea or groundwater, producing hydrogen sulfide. This in turn reacts with dissolved ferrous iron, forming very fine grained and highly reactive framboid crystals of iron sulfides such as (pyrite). Up to a point, warmer temperatures are more favourable conditions for these bacteria, creating a greater potential for formation of iron sulfides. Tropical waterlogged environments, such as mangrove swamps or estuaries, may contain higher levels of pyrite than those formed in more temperate climates. The pyrite is stable until exposed to air, at which point the pyrite rapidly oxidises and produces sulfuric acid. The impacts of acid sulfate soil leachate may persist over a long time, and/or peak seasonally (after dry periods with the first rains). In some areas of Australia, acid sulfate soils that drained 100 years ago are still releasing acid. When drained, pyrite- (FeS2) containing soils (also called cat-clays) may become extremely acidic (pH < 4) due to the oxidation of pyrite into sulfuric acid (H2SO4). In its simplest form, this chemical reaction is as follows: The product Fe(OH)3, iron(III) hydroxide (orange), precipitates as a solid, insoluble mineral by which the alkalinity component is immobilized, while the acidity remains active in the sulfuric acid. The process of acidification is accompanied by the formation of high amounts of aluminium (Al3+, released from clay minerals under influence of the acidity), which are harmful to vegetation. Other products of the chemical reaction are: The iron can be present in bivalent and trivalent forms (Fe2+, the ferrous ion, and Fe3+, the ferric ion respectively). The ferrous form is soluble, whereas the ferric form is not. The more oxidized the soil becomes, the more the ferric forms dominate. Acid sulfate soils exhibit an array of colors ranging from black, brown, blue-gray, red, orange and yellow. The hydrogen clay can be improved by admitting sea water: the magnesium (Mg) and sodium (Na) in the sea water replaces the adsorbed hydrogen and other exchangeable acidic cations such as aluminium (Al). However this can create additional risks when the hydrogen ions and exchangeable metals are mobilised. Acid sulfate soils are widespread around coastal regions, and are also locally associated with freshwater wetlands and saline sulfate-rich groundwater in some agricultural areas. In Australia, coastal acid sulfate soils occupy an estimated 58,000 km2, underlying coastal estuaries and floodplains near where the majority of the Australian population lives. Acid sulfate soil disturbance is often associated with dredging, excavation dewatering activities during canal, housing and marina developments. Droughts can also result in acid sulfate soil exposure and acidification. Acid sulfate soils that have not been disturbed are called potential acid sulfate soils (PASS). Acid sulfate soils that have been disturbed are called actual acid sulfate soils (AASS).

[ "Soil water", "Sulfate", "Estuarine acidification" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map