language-iconOld Web
English
Sign In

Genetically modified soybean

A genetically modified soybean is a soybean (Glycine max) that has had DNA introduced into it using genetic engineering techniques.:5 In 1996 the first genetically modified soybean was introduced to the U.S. market, by Monsanto. In 2014, 90.7 million hectares of GM soy were planted worldwide, 82% of the total soy cultivation area.Domingo, José L.; Bordonaba, Jordi Giné (2011). 'A literature review on the safety assessment of genetically modified plants' (PDF). Environment International. 37 (4): 734–742. doi:10.1016/j.envint.2011.01.003. PMID 21296423. In spite of this, the number of studies specifically focused on safety assessment of GM plants is still limited. However, it is important to remark that for the first time, a certain equilibrium in the number of research groups suggesting, on the basis of their studies, that a number of varieties of GM products (mainly maize and soybeans) are as safe and nutritious as the respective conventional non-GM plant, and those raising still serious concerns, was observed. Moreover, it is worth mentioning that most of the studies demonstrating that GM foods are as nutritional and safe as those obtained by conventional breeding, have been performed by biotechnology companies or associates, which are also responsible of commercializing these GM plants. Anyhow, this represents a notable advance in comparison with the lack of studies published in recent years in scientific journals by those companies.Pinholster, Ginger (October 25, 2012). 'AAAS Board of Directors: Legally Mandating GM Food Labels Could 'Mislead and Falsely Alarm Consumers''. American Association for the Advancement of Science. Retrieved February 8, 2016.'Report 2 of the Council on Science and Public Health (A-12): Labeling of Bioengineered Foods' (PDF). American Medical Association. 2012. Archived from the original on September 7, 2012. Retrieved March 19, 2016. Bioengineered foods have been consumed for close to 20 years, and during that time, no overt consequences on human health have been reported and/or substantiated in the peer-reviewed literature.CS1 maint: BOT: original-url status unknown (link)'Genetically modified foods and health: a second interim statement' (PDF). British Medical Association. March 2004. Retrieved March 21, 2016. In our view, the potential for GM foods to cause harmful health effects is very small and many of the concerns expressed apply with equal vigour to conventionally derived foods. However, safety concerns cannot, as yet, be dismissed completely on the basis of information currently available. When seeking to optimise the balance between benefits and risks, it is prudent to err on the side of caution and, above all, learn from accumulating knowledge and experience. Any new technology such as genetic modification must be examined for possible benefits and risks to human health and the environment. As with all novel foods, safety assessments in relation to GM foods must be made on a case-by-case basis. Members of the GM jury project were briefed on various aspects of genetic modification by a diverse group of acknowledged experts in the relevant subjects. The GM jury reached the conclusion that the sale of GM foods currently available should be halted and the moratorium on commercial growth of GM crops should be continued. These conclusions were based on the precautionary principle and lack of evidence of any benefit. The Jury expressed concern over the impact of GM crops on farming, the environment, food safety and other potential health effects. The Royal Society review (2002) concluded that the risks to human health associated with the use of specific viral DNA sequences in GM plants are negligible, and while calling for caution in the introduction of potential allergens into food crops, stressed the absence of evidence that commercially available GM foods cause clinical allergic manifestations. The BMA shares the view that that there is no robust evidence to prove that GM foods are unsafe but we endorse the call for further research and surveillance to provide convincing evidence of safety and benefit. A genetically modified soybean is a soybean (Glycine max) that has had DNA introduced into it using genetic engineering techniques.:5 In 1996 the first genetically modified soybean was introduced to the U.S. market, by Monsanto. In 2014, 90.7 million hectares of GM soy were planted worldwide, 82% of the total soy cultivation area. The genetic makeup of a soybean gives it a wide variety of uses, thus keeping it in high demand. First, manufacturers only wanted to use transgenics to be able to grow more soy at a minimal cost to meet this demand, and to fix any problems in the growing process, but they eventually found they could modify the soybean to contain healthier components, or even focus on one aspect of the soybean to produce in larger quantities. These phases became known as the first and second generation of genetically modified (GM) foods. As Peter Celec describes, 'benefits of the first generation of GM foods were oriented towards the production process and companies, the second generation of GM foods offers, on contrary, various advantages and added value for the consumer', including 'improved nutritional composition or even therapeutic effects.':533 Roundup Ready soybeans (The first variety was also known as GTS 40-3-2 (OECD UI: MON-04032-6)) are a series of genetically engineered varieties of glyphosate-resistant soybeans produced by Monsanto. Glyphosate kills plants by interfering with the synthesis of the essential amino acids phenylalanine, tyrosine and tryptophan. These amino acids are called 'essential' because animals cannot make them; only plants and micro-organisms can make them and animals obtain them by eating plants. Plants and microorganisms make these amino acids with an enzyme that only plants and lower organisms have, called 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). EPSPS is not present in animals, which instead obtain aromatic amino acids from their diet. Roundup Ready Soybeans express a version of EPSPS from the CP4 strain of the bacteria Agrobacterium tumefaciens, expression of which is regulated by an enhanced 35S promoter (E35S) from cauliflower mosaic virus (CaMV), a chloroplast transit peptide (CTP4) coding sequence from Petunia hybrida, and a nopaline synthase (nos 3') transcriptional termination element from Agrobacterium tumefaciens. The plasmid with EPSPS and the other genetic elements mentioned above was inserted into soybean germplasm with a gene gun by scientists at Monsanto and Asgrow. The patent on the first generation of Roundup Ready soybeans expired in March 2015. First approved commercially in the United States during 1994, GTS 40-3-2 was subsequently introduced to Canada in 1995, Japan and Argentina in 1996, Uruguay in 1997, Mexico and Brazil in 1998, and South Africa in 2001. GMO Soybean is also approved by the United Nations in 1999. GTS 40-3-2 can be detected using both nucleic acid and protein analysis methods. Following expiration of Monsanto's patent on the first variety of glyphosate-resistant Roundup Ready soybeans, development began on glyphosate-resistant generic soybeans. The first variety, developed at the University of Arkansas Division of Agriculture, came on the market in 2015. With a slightly lower yield than newer Monsanto varieties, it costs about 1/2 as much, and seeds can be saved for subsequent years. According to its creator it is adapted to conditions in Arkansas. Several other varieties are being bred by crossing the original variety of Roundup Ready soybeans with other soybean varieties.

[ "Genetically modified organism" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map