language-iconOld Web
English
Sign In

Planetary habitability

Planetary habitability is the measure of a planet's or a natural satellite's potential to develop and maintain environments hospitable to life. Life may be generated directly on a planet or satellite endogenously or be transferred to it from another body, a hypothetical process known as panspermia. Environments do not need to contain life to be considered habitable nor are accepted habitable zones the only areas in which life might arise. As the existence of life beyond Earth is unknown, planetary habitability is largely an extrapolation of conditions on Earth and the characteristics of the Sun and Solar System which appear favorable to life's flourishing. Of particular interest are those factors that have sustained complex, multicellular organisms on Earth and not just simpler, unicellular creatures. Research and theory in this regard is a component of a number of natural sciences, such as astronomy, planetary science and the emerging discipline of astrobiology. An absolute requirement for life is an energy source, and the notion of planetary habitability implies that many other geophysical, geochemical, and astrophysical criteria must be met before an astronomical body can support life. In its astrobiology roadmap, NASA has defined the principal habitability criteria as 'extended regions of liquid water, conditions favorable for the assembly of complex organic molecules, and energy sources to sustain metabolism'. In August 2018, researchers reported that water worlds could support life. Habitability indicators and biosignatures must be interpreted within a planetary and environmental context. In determining the habitability potential of a body, studies focus on its bulk composition, orbital properties, atmosphere, and potential chemical interactions. Stellar characteristics of importance include mass and luminosity, stable variability, and high metallicity. Rocky, wet terrestrial-type planets and moons with the potential for Earth-like chemistry are a primary focus of astrobiological research, although more speculative habitability theories occasionally examine alternative biochemistries and other types of astronomical bodies. The idea that planets beyond Earth might host life is an ancient one, though historically it was framed by philosophy as much as physical science. The late 20th century saw two breakthroughs in the field. The observation and robotic spacecraft exploration of other planets and moons within the Solar System has provided critical information on defining habitability criteria and allowed for substantial geophysical comparisons between the Earth and other bodies. The discovery of extrasolar planets, beginning in the early 1990s and accelerating thereafter, has provided further information for the study of possible extraterrestrial life. These findings confirm that the Sun is not unique among stars in hosting planets and expands the habitability research horizon beyond the Solar System. The chemistry of life may have begun shortly after the Big Bang, 13.8 billion years ago, during a habitable epoch when the Universe was only 10–17 million years old. According to the panspermia hypothesis, microscopic life—distributed by meteoroids, asteroids and other small Solar System bodies—may exist throughout the Universe. Nonetheless, Earth is the only place in the Universe known to harbor life. Estimates of habitable zones around other stars, along with the discovery of hundreds of extrasolar planets and new insights into the extreme habitats here on Earth, suggest that there may be many more habitable places in the Universe than considered possible until very recently. On 4 November 2013, astronomers reported, based on Kepler space mission data, that there could be as many as 40 billion Earth-sized planets orbiting in the habitable zones of Sun-like stars and red dwarfs within the Milky Way. 11 billion of these estimated planets may be orbiting Sun-like stars. The nearest such planet may be 12 light-years away, according to the scientists. An understanding of planetary habitability begins with the host star. The classical HZ is defined for surface conditions only; but a metabolism that does not depend on the stellar light, can still exist outside the HZ, thriving in the interior of the planet where liquid water is available. Under the auspices of SETI's Project Phoenix, scientists Margaret Turnbull and Jill Tarter developed the 'HabCat' (or Catalogue of Habitable Stellar Systems) in 2002. The catalogue was formed by winnowing the nearly 120,000 stars of the larger Hipparcos Catalogue into a core group of 17,000 potentially habitable stars, and the selection criteria that were used provide a good starting point for understanding which astrophysical factors are necessary to habitable planets. According to research published in August 2015, very large galaxies may be more favorable to the formation and development of habitable planets than smaller galaxies, like the Milky Way galaxy.

[ "Habitability", "Circumstellar habitable zone", "Planetary system", "Terrestrial planet", "Exoplanet", "Natural satellite habitability", "Eccentric Jupiter", "Planetary engineering", "Kepler-62e", "Earth Similarity Index" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map