language-iconOld Web
English
Sign In

Fire ecology

Fire ecology is a scientific discipline concerned with natural processes involving fire in an ecosystem and the ecological effects, the interactions between fire and the abiotic and biotic components of an ecosystem, and the role as an ecosystem process. Many ecosystems, particularly prairie, savanna, chaparral and coniferous forests, have evolved with fire as an essential contributor to habitat vitality and renewal. Many plant species in fire-affected environments require fire to germinate, establish, or to reproduce. Wildfire suppression not only eliminates these species, but also the animals that depend upon them. Fire ecology is a scientific discipline concerned with natural processes involving fire in an ecosystem and the ecological effects, the interactions between fire and the abiotic and biotic components of an ecosystem, and the role as an ecosystem process. Many ecosystems, particularly prairie, savanna, chaparral and coniferous forests, have evolved with fire as an essential contributor to habitat vitality and renewal. Many plant species in fire-affected environments require fire to germinate, establish, or to reproduce. Wildfire suppression not only eliminates these species, but also the animals that depend upon them. Campaigns in the United States have historically molded public opinion to believe that wildfires are always harmful to nature. This view is based on the outdated belief that ecosystems progress toward an equilibrium and that any disturbance, such as fire, disrupts the harmony of nature. More recent ecological research has shown, however, that fire is an integral component in the function and biodiversity of many natural habitats, and that the organisms within these communities have adapted to withstand, and even to exploit, natural wildfire. More generally, fire is now regarded as a 'natural disturbance', similar to flooding, wind-storms, and landslides, that has driven the evolution of species and controls the characteristics of ecosystems. Fire suppression, in combination with other human-caused environmental changes, may have resulted in unforeseen consequences for natural ecosystems. Some large wildfires in the United States have been blamed on years of fire suppression and the continuing expansion of people into fire-adapted ecosystems, but climate change is more likely responsible. Land managers are faced with tough questions regarding how to restore a natural fire regime, but allowing wildfires to burn is the least expensive and likely most effective method. A fire regime describes the characteristics of fire and how it interacts with a particular ecosystem. Its 'severity' is a term that ecologists use to refer to the impact that a fire has on an ecosystem. Ecologists can define this in many ways, but one way is through an estimate of plant mortality. Fire can burn at three levels. Ground fires will burn through soil that is rich in organic matter. Surface fires will burn through dead plant material that is lying on the ground. Crown fires will burn in the tops of shrubs and trees. Ecosystems generally experience a mix of all three. Fires will often break out during a dry season, but in some areas wildfires may also commonly occur during a time of year when lightning is prevalent. The frequency over a span of years at which fire will occur at a particular location is a measure of how common wildfires are in a given ecosystem. It is either defined as the average interval between fires at a given site, or the average interval between fires in an equivalent specified area. Defined as the energy released per unit length of fireline (kW m−1), wildfire intensity can be estimated either as Fires can affect soils through heating and combustion processes. Depending on the temperatures of the soils caused by the combustion processes, different effects will happen- from evaporation of water at the lower temperature ranges, to the combustion of soil organic matter and formation of pyrogenic organic matter, otherwise known as charcoal. Fires can cause changes in soil nutrients through a variety of mechanisms, which include oxidation, volatilization, erosion, and leaching by water, but the event must usually be of high temperatures in order of significant loss of nutrients to occur. However, quantity of nutrients available in soils are usually increased due to the ash that is generated, and this is made quickly available, as opposed to the slow release of nutrients by decomposition. Rock spalling (or thermal exfoliation) accelerates weathering of rock and potentially the release of some nutrients. Increase in the pH of the soil following a fire is commonly observed, most likely due to the formation of calcium carbonate, and the subsequent decomposition of this calcium carbonate to calcium oxide when temperatures get even higher. It could also be due to the increased cation content in the soil due to the ash, which temporarily increases soil pH. Microbial activity in the soil might also increase due to the heating of soil and increased nutrient content in the soil, though studies have also found complete loss of microbes on the top layer of soil after a fire. Overall, soils become more basic (higher pH) following fires because of acid combustion. By driving novel chemical reactions at high temperatures, fire can even alter the texture and structure of soils by affecting the clay content and the soil's porosity.

[ "Ecosystem", "Vegetation", "Sabal etonia", "Fuel ladder", "Native American use of fire", "Callitris intratropica", "2013 Beaver Creek Fire" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map