language-iconOld Web
English
Sign In

Kernel (algebra)

In the various branches of mathematics that fall under the heading of abstract algebra, the kernel of a homomorphism measures the degree to which the homomorphism fails to be injective. An important special case is the kernel of a linear map. The kernel of a matrix, also called the null space, is the kernel of the linear map defined by the matrix. In the various branches of mathematics that fall under the heading of abstract algebra, the kernel of a homomorphism measures the degree to which the homomorphism fails to be injective. An important special case is the kernel of a linear map. The kernel of a matrix, also called the null space, is the kernel of the linear map defined by the matrix. The definition of kernel takes various forms in various contexts. But in all of them, the kernel of a homomorphism is trivial (in a sense relevant to that context) if and only if the homomorphism is injective. The fundamental theorem on homomorphisms (or first isomorphism theorem) is a theorem, again taking various forms, that involves the quotient object (also called quotient algebra in universal algebra, and cokernel in category theory) defined by the kernel. In this article, we first survey kernels for some important types of algebraic structures; then we give general definitions from universal algebra for generic algebraic structures. Let V and W be vector spaces over a field (or more generally, modules over a ring) and let T be a linear map from V to W. If 0W is the zero vector of W, then the kernel of T is the preimage of the zero subspace {0W}; that is, the subset of V consisting of all those elements of V that are mapped by T to the element 0W. The kernel is usually denoted as ker T, or some variation thereof: Since a linear map preserves zero vectors, the zero vector 0V of V must belong to the kernel. The transformation T is injective if and only if its kernel is reduced to the zero subspace. The kernel ker T is always a linear subspace of V. Thus, it makes sense to speak of the quotient space V/(ker T). The first isomorphism theorem for vector spaces states that this quotient space is naturally isomorphic to the image of T (which is a subspace of W). As a consequence, the dimension of V equals the dimension of the kernel plus the dimension of the image. If V and W are finite-dimensional and bases have been chosen, then T can be described by a matrix M, and the kernel can be computed by solving the homogeneous system of linear equations Mv = 0. In this case, the kernel of T may be identified to the kernel of the matrix M, also called 'null space' of M. The dimension of the null space, called the nullity of M, is given by the number of columns of M minus the rank of M, as a consequence of the rank–nullity theorem. Solving homogeneous differential equations often amounts to computing the kernel of certain differential operators.For instance, in order to find all twice-differentiable functions f from the real line to itself such that let V be the space of all twice differentiable functions, let W be the space of all functions, and define a linear operator T from V to W by

[ "Congruence relation", "Algebra homomorphism", "Combinatorics", "Discrete mathematics", "Pure mathematics" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map