language-iconOld Web
English
Sign In

Dynamic global vegetation model

A Dynamic Global Vegetation Model (DGVM) is a computer program that simulates shifts in potential vegetation and its associated biogeochemical and hydrological cycles as a response to shifts in climate. DGVMs use time series of climate data and, given constraints of latitude, topography, and soil characteristics, simulate monthly or daily dynamics of ecosystem processes. DGVMs are used most often to simulate the effects of future climate change on natural vegetation and its carbon and water cycles. A Dynamic Global Vegetation Model (DGVM) is a computer program that simulates shifts in potential vegetation and its associated biogeochemical and hydrological cycles as a response to shifts in climate. DGVMs use time series of climate data and, given constraints of latitude, topography, and soil characteristics, simulate monthly or daily dynamics of ecosystem processes. DGVMs are used most often to simulate the effects of future climate change on natural vegetation and its carbon and water cycles. DGVMs generally combine biogeochemistry, biogeography, and disturbance submodels. Disturbance is often limited to wildfires, but in principle could include any of: forest/land management decisions, windthrow, insect damage, ozone damage etc. DGVMs usually 'spin up' their simulations from bare ground to equilibrium vegetation (e.g. climax community) to establish realistic initial values for their various 'pools': carbon and nitrogen in live and dead vegetation, soil organic matter, etc. corresponding to a documented historical vegetation cover. DGVMs are usually run in a spatially distributed mode, with simulations carried out for thousands of 'cells', geographic points which are assumed to have homogeneous conditions within each cell. Simulations are carried out across a range of spatial scales, from global to landscape. Cells are usually arranged as lattice points; the distance between adjacent lattice points may be as coarse as a few degrees of latitude or longitude, or as fine as 30 arc-seconds. Simulations of the conterminous United States in the first DGVM comparison exercise (LPJ and MC1) called the VEMAP project in the 1990s used a lattice grain of one-half degree. Global simulations by the PIK group and collaborators using 6 different DGVMs (HYBRID, IBIS, LPJ, SDGVM, TRIFFID, and VECODE) used the same resolution as the general circulation model (GCM) that provided the climate data, 3.75 deg longitude x 2.5 deg latitude, a total of 1631 land grid cells. Sometimes lattice distances are specified in kilometers rather than angular measure, especially for finer grains, so a project like VEMAP is often referred to as 50 km grain.

[ "Primary production" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map