language-iconOld Web
English
Sign In

Skewed X-inactivation

Skewed X chromosome inactivation occurs when the inactivation of one X chromosome is favored over the other, leading to an uneven number of cells with each chromosome inactivated. It is usually defined as one allele being found on the active X chromosome in over 75% of cells, and extreme skewing is when over 90% of cells have inactivated the same X chromosome. It can be caused by primary nonrandom inactivation, either by chance due to a small cell pool or directed by genes, or caused by secondary nonrandom inactivation, which occurs by selection. Most females will have some levels of skewing. It is relatively common in adult females; around 35% of women have a skewed ratio over 70:30, and 7% of women have an extreme skewed ratio of over 90:10. This is of medical significance due to the potential for the expression of disease genes present on the X chromosome that are normally not expressed due to random X inactivation. X chromosome inactivation occurs in females to provide dosage compensation between the sexes. If females kept both X chromosomes active they would have twice the number of active X genes than males, who only have one copy of the X chromosome. At approximately the time of implantation (see Implantation (human embryo)), one of the two X chromosomes in each cell of the female embryo is randomly selected for inactivation. Cells then undergo transcriptional and epigenetic changes to ensure this inactivation is permanent. All progeny from these initial cells will maintain the inactivation of the same chromosome, resulting in a mosaic pattern of cells in females. Skewed X chromosome inactivation occurs when the inactivation of one X chromosome is favored over the other, leading to an uneven number of cells with each chromosome inactivated. It is usually defined as one allele being found on the active X chromosome in over 75% of cells, and extreme skewing is when over 90% of cells have inactivated the same X chromosome. It can be caused by primary nonrandom inactivation, either by chance due to a small cell pool or directed by genes, or caused by secondary nonrandom inactivation, which occurs by selection. Most females will have some levels of skewing. It is relatively common in adult females; around 35% of women have a skewed ratio over 70:30, and 7% of women have an extreme skewed ratio of over 90:10. This is of medical significance due to the potential for the expression of disease genes present on the X chromosome that are normally not expressed due to random X inactivation. X chromosome inactivation occurs in females to provide dosage compensation between the sexes. If females kept both X chromosomes active they would have twice the number of active X genes than males, who only have one copy of the X chromosome. At approximately the time of implantation (see Implantation (human embryo)), one of the two X chromosomes in each cell of the female embryo is randomly selected for inactivation. Cells then undergo transcriptional and epigenetic changes to ensure this inactivation is permanent. All progeny from these initial cells will maintain the inactivation of the same chromosome, resulting in a mosaic pattern of cells in females. Nonrandom X Inactivation leads to skewed X inactivation. Nonrandom X inactivation can be caused by chance or directed by genes. If the initial pool of cells in which X inactivation occurs is small, chance can cause skewing to occur in some individuals by causing a bigger proportion of the initial cell pool to inactivate one X chromosome. A reduction in the size of this initial cell pool would increase the likelihood of skewing occurring. This skewing can then be inherited by progeny cells, or increased by secondary selection. The X-chromosome controlling element (Xce) gene in mice has been found to influence genetically mediated skewing. It is unknown whether a similar gene plays a role in human X inactivation, although a 2008 study found that skewing in humans is mostly caused by secondary events rather than a genetic tendency.There is a much higher concordance rate in genetically identical (monozygotic) twins compared to non-identical (dizygotic) twins, which suggests a strong genetic input. A 10% difference in the skewing of genetically identical twins did exist however, so there are other contributing factors outside of genetics alone.It is difficult to identify primary nonrandom inactivation in humans, as early cell selection occurs in the embryo. Mutation and imprinting of the XIST gene, a part of the X inactivation centre, can result in skewing. This is rare in humans. Skewed X inactivation in mice is controlled by the Xce gene on the X chromosome. Xce acts in cis, which means that it acts upon the chromosome from which it was transcribed. There are four alleles of Xce, labeled a, b, c, and d. Each allele has a different likelihood of inactivation, with a < b < c < d, where d is the most likely to remain active and a is the least likely.The strength differences between the four alleles are likely due to variations in the number of binding sites for a crucial actor in inactivation. The specific transfactor is not known currently. Homozygotic mouse cells will have roughly even levels of inactivation due to both alleles having equal chance of being inactivated. For example, a mouse with the genotype dd will have an inactivation ratio very close to 50:50. Heterozygotes, will experience greater levels of skewing due to the differing inactivation likelihood of the two alleles. A mouse cell with the Xce genotype ad will have a greater number of the a-carrying than d-carrying X chromosomes inactivated, because the d-carrying X chromosome is less likely to be inactivated.There are two theories on the mechanism Xce uses to affect inactivation. The first is that genomic differences in the Xce alleles alter the sequence of the long non-coding RNA that is an integral part of X chromosome inactivation. The second is that Xce acts as a binding site for dosage factors that will affect XIST gene and Tsix expression (long non-coding RNAs involved in X chromosome inactivation). Skewing can also be influenced by the parent-of-origin effect, in which skewing becomes biased towards either the maternal or paternal X chromosome. Studies have suggested an X linked gene or genes that control this effect, but the exact gene has not yet been identified. A 2010 study found a small but significant under-expression of the paternal X chromosome in mice. Extra-embryonic tissue preferentially inactivate the paternal X chromosome. Marsupials will always inactivate the paternal X chromosome, in a process named imprinting. Researchers hypothesized a link between the slight preference for inactivation of the paternal X in mice tissue, and the preference in extra-embryonic tissue and Marsupials. There may be a conserved epigenetic mark that drives this preference. Skewed inactivation patterns can also emerge due to mutations that change the quantity of guanine on the Xist promoter. The Xist gene is responsible for inactivating the X chromosome from which it is transcribed. X chromosome inactivation in general is influenced by the number of guanine-containing nucleotides on the Xist promoter, although generally inactivation still follows a random pattern. A rare mutation can occur, however, in which a cytosine residue is converted to guanine on the Xist promoter. It has been hypothesized that the mutation causes a change in the Xist transcript or in the levels of transcript produced, which causes the cell to differentiate between the two X chromosomes and causes the chromosome with the mutation to become preferentially inactivated. The mechanism has not been fully elucidated at this time, although research does point towards decreased promoter activity as a result of the mutation being a major part of the process. Secondary skewing occurs when an X-linked mutation affects cell proliferation or survival. If a mutation on one X chromosome negatively affects a cell’s ability to proliferate or survive, there will be a larger proportion of cells with the other X chromosome active. This selection of one X chromosome can vary between tissue types, as it depends on the specific gene and its activity in the tissue, with rapidly dividing cells giving selection processes more time to work. Blood cells, for example, tend to have the highest rates of skewing due to the extremely high dividing and replacement rate within the human body. The strength of selection can also vary depending on the gene under selection, and so skewing can occur at different rates and to different extents. Secondary selection tends to cause an increase in skewing with age. This is primarily due to a longer span over which selective pressure has room in which to act. Skewing is still seen in young children, but with a lower frequency and at less extreme levels in most cases.

[ "X chromosome", "X-inactivation" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map