language-iconOld Web
English
Sign In

Photosystem

Photosystems are functional and structural units of protein complexes involved in photosynthesis that together carry out the primary photochemistry of photosynthesis: the absorption of light and the transfer of energy and electrons. Photosystems are found in the thylakoid membranes of plants, algae and cyanobacteria. They are located in the chloroplasts of plants and algae, and in the cytoplasmic membrane of photosynthetic bacteria. There are two kinds of photosystems: II and I. Photosystems are functional and structural units of protein complexes involved in photosynthesis that together carry out the primary photochemistry of photosynthesis: the absorption of light and the transfer of energy and electrons. Photosystems are found in the thylakoid membranes of plants, algae and cyanobacteria. They are located in the chloroplasts of plants and algae, and in the cytoplasmic membrane of photosynthetic bacteria. There are two kinds of photosystems: II and I. At the heart of a photosystem lies the reaction center, which is an enzyme that uses light to reduce molecules (provide with electrons). This reaction center is surrounded by light-harvesting complexes that enhance the absorption of light. Two families of reaction centers in photosystems exist: type I reaction centers (such as photosystem I (P700) in chloroplasts and in green-sulphur bacteria and type II reaction centers (such as photosystem II (P680) in chloroplasts and in non-sulphur purple bacteria. Each of the photosystem can be identified by the wavelength of light to which it is most reactive (700 and 680 nanometers, respectively for PSI and PSII in chloroplasts), the amount and type of light-harvesting complex present and the type of terminal electron acceptor used. Type I photosystems use ferredoxin-like iron-sulfur cluster proteins as terminal electron acceptors, while type II photosystems ultimately shuttle electrons to a quinone terminal electron acceptor. Both reaction center types are present in chloroplasts and cyanobacteria, and work together to form a unique photosynthetic chain able to extract electrons from water, creating oxygen as a byproduct. A reaction center comprises several (>24 or >33) protein subunits, that provide a scaffold for a series of cofactors. The cofactors can be pigments (like chlorophyll, pheophytin, carotenoids), quinones, or iron-sulfur clusters. For oxygenic photosynthesis, both photosystems I and II are required. Oxygenic photosynthesis can be performed by plants and cyanobacteria; cyanobacteria are believed to be the progenitors of the photosystem-containing chloroplasts of eukaryotes. Photosynthetic bacteria that cannot produce oxygen have a single photosystem similar to either.

[ "Chloroplast", "Photosystem II", "LHCII kinase", "Light-harvesting complexes of green plants", "Cytochrome bf", "Chlorophyll f", "Cyt b6f complex" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map