language-iconOld Web
English
Sign In

Sulfolobus

Sulfolobus is a genus of microorganism in the family Sulfolobaceae. It belongs to the archaea domain. Sulfolobus species grow in volcanic springs with optimal growth occurring at pH 2-3 and temperatures of 75-80 °C, making them acidophiles and thermophiles respectively. Sulfolobus cells are irregularly shaped and flagellar. Species of Sulfolobus are generally named after the location from which they were first isolated, e.g. Sulfolobus solfataricus was first isolated in the Solfatara volcano. Other species can be found throughout the world in areas of volcanic or geothermal activity, such as geological formations called mud pots, which are also known as solfatare (plural of solfatara). When the first Archaeal genome, Methanococcus jannaschii, had been sequenced completely in 1996, it was found that the genes in the genome of Methanococcus jannaschii involved in DNA replication, transcription, and translation were more related to their counterparts in eukaryotes than to those in other prokaryotes. In 2001, the first genome sequence of Sulfolobus, Sulfolobus solfataricus P2, was published. In P2's genome, the genes related to chromosome replication were likewise found to be more related to those in eukaryotes. These genes include DNA polymerase, primase (including two subunits), MCM, CDC6/ORC1, RPA, RPC, and PCNA. In 2004, the origins of DNA replication of Sulfolobus solfataricus and Sulfolobus acidocaldarius were identified. It showed that both species contained two origins in their genome. This was the first time that more than a single origin of DNA replication had been shown to be used in a prokaryotic cell. The mechanism of DNA replication in archaea is evolutionary conserved, and similar to that of eukaryotes. Sulfolobus is now used as a model to study the molecular mechanisms of DNA replication in Archaea. And because the system of DNA replication in Archaea is much simpler than that in Eukaryota, it was suggested that Archaea could be used as a model to study the much more complex DNA replication in Eukaryota. Sulfolobus proteins are of interest for biotechnology and industrial use due to their thermostable nature. One application is the creation of artificial derivatives from S. acidocaldarius proteins, named affitins. Intracellular proteins are not necessarily stable at low pH however, as Sulfolobus species maintain a significant pH gradient across the outer membrane. Sulfolobales are metabolically dependent on sulfur: heterotrophic or autotrophic, their energy comes from the oxidation of sulfur and/or cellular respiration in which sulfur acts as the final electron acceptor. For example, S. tokodaii is known to oxidize hydrogen sulfide to sulfate intracellularly. The complete genomes have been sequenced for S. acidocaldarius DSM 639 (2,225,959 nucleotides), S. solfataricus P2 (2,992,245 nucleotides), and S. tokodaii str. 7 (2,694,756 nucleotides). The archaeon Sulfolobus solfataricus has a circular chromosome that consists of 2,992,245 bp. Another sequenced species, S. tokodaii has a circular chromosome as well but is slightly smaller with 2,694,756 bp. Both species lack the genes ftsZ and minD, which has been characteristic of sequenced Crenarchaeota. They also code for citrate synthase and two subunits of 2-oxoacid:ferredoxin oxidoreductase, which plays the same role as alpha-ketoglutarate dehydrogenase in the TCA (tricarboxylic/Krebs/citric acid) cycle. This indicates that Sulfolobus has a TCA cycle system similar to that found in mitochondria of eukaryotes. Other genes in the respiratory chain which partake in the production of ATP were not similar to what is found in eukaryotes. Cytochrome c is one such example that plays an important role in electron transfer to oxygen in eukaryotes. This was also found in A. pernix K1. Since this step is important for an aerobic microorganism like Sulfolobus, it probably uses a different molecule for the same function or has a different pathway.

[ "Thermophile", "Archaea", "Acidianus tengchongensis", "Sulfolobus sp.", "Sulfolobus shibatae", "ORDER SULFOLOBALES", "Rudivirus" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map