language-iconOld Web
English
Sign In

Kraft process

The kraft process (also known as kraft pulping or sulfate process) is a process for conversion of wood into wood pulp, which consists of almost pure cellulose fibers, the main component of paper. The kraft process entails treatment of wood chips with a hot mixture of water, sodium hydroxide (NaOH), and sodium sulfide (Na2S), known as white liquor, that breaks the bonds that link lignin, hemicellulose, and cellulose. The technology entails several steps, both mechanical and chemical. It is the dominant method for producing paper. In some situations, the process has been controversial because kraft plants can release odorous products and in some situations produce substantial liquid wastes. The kraft process (also known as kraft pulping or sulfate process) is a process for conversion of wood into wood pulp, which consists of almost pure cellulose fibers, the main component of paper. The kraft process entails treatment of wood chips with a hot mixture of water, sodium hydroxide (NaOH), and sodium sulfide (Na2S), known as white liquor, that breaks the bonds that link lignin, hemicellulose, and cellulose. The technology entails several steps, both mechanical and chemical. It is the dominant method for producing paper. In some situations, the process has been controversial because kraft plants can release odorous products and in some situations produce substantial liquid wastes. The kraft process (so called because of the superior strength of the resulting paper, from the German word Kraft for 'strength') was invented by Carl F. Dahl in 1879 in Danzig, Prussia, Germany. U.S. Patent 296,935 was issued in 1884, and a pulp mill using this technology started (in Sweden) in 1890. The invention of the recovery boiler by G. H. Tomlinson in the early 1930s was a milestone in the advancement of the kraft process. It enabled the recovery and reuse of the inorganic pulping chemicals such that a kraft mill is a nearly closed-cycle process with respect to inorganic chemicals, apart from those used in the bleaching process. For this reason, in the 1940s, the kraft process superseded the sulfite process as the dominant method for producing wood pulp. Common wood chips used in pulp production are 12–25 millimetres (0.47–0.98 in) long and 2–10 millimetres (0.079–0.394 in) thick. The chips normally first enter the presteaming where they are wetted and preheated with steam. Cavities inside fresh wood chips are partly filled with liquid and partly with air. The steam treatment causes the air to expand and about 25% of the air to be expelled from the chips. The next step is to saturate the chips with black and white liquor. Air remaining in chips at the beginning of liquor impregnation is trapped within the chips. The impregnation can be done before or after the chips enters the digester and is normally done below 100 °C (212 °F). The cooking liquors consist of a mixture of white liquor, water in chips, condensed steam and weak black liquor. In the impregnation, cooking liquor penetrates into the capillary structure of the chips and low temperature chemical reactions with the wood begin. A good impregnation is important to get a homogeneous cook and low rejects. About 40–60% of all alkali consumption in the continuous process occurs in the impregnation zone. The wood chips are then cooked in pressurized vessels called digesters. Some digesters operate in a batch manner and some in a continuous process. There are several variations of the cooking processes both for the batch and the continuous digesters. Digesters producing 1,000 tonnes or more of pulp per day are common, with the largest producing more than 3,500 tonnes per day.In a continuous digester, the materials are fed at a rate that allows the pulping reaction to be complete by the time the materials exit the reactor. Typically, delignification requires several hours at 170 to 176 °C (338 to 349 °F). Under these conditions lignin and hemicellulose degrade to give fragments that are soluble in the strongly basic liquid. The solid pulp (about 50% by weight of the dry wood chips) is collected and washed. At this point the pulp is known as brown stock because of its color. The combined liquids, known as black liquor (because of its color), contain lignin fragments, carbohydrates from the breakdown of hemicellulose, sodium carbonate, sodium sulfate and other inorganic salts. One of the main chemical reactions that underpin the kraft process is the scission of ether bonds by the nucleophilic sulfide (S2−) or bisulfide (HS−) ions. The excess black liquor contains about 15% solids and is concentrated in a multiple effect evaporator. After the first step the black liquor has about 20–30% solids. At this concentration the rosin soap rises to the surface and is skimmed off. The collected soap is further processed to tall oil. Removal of the soap improves the evaporation operation of the later effects. The weak black liquor is further evaporated to 65% or even 80% solids ('heavy black liquor') and burned in the recovery boiler to recover the inorganic chemicals for reuse in the pulping process. Higher solids in the concentrated black liquor increases the energy and chemical efficiency of the recovery cycle, but also gives higher viscosity and precipitation of solids (plugging and fouling of equipment). During combustion sodium sulfate is reduced to sodium sulfide by the organic carbon in the mixture: This reaction is similar to thermochemical sulfate reduction in geochemistry. The molten salts ('smelt') from the recovery boiler are dissolved in a process water known as 'weak wash'. This process water, also known as 'weak white liquor' is composed of all liquors used to wash lime mud and green liquor precipitates. The resulting solution of sodium carbonate and sodium sulfide is known as 'green liquor', although it is not known exactly what causes the liquor to be green. This liquid is mixed with calcium oxide, which becomes calcium hydroxide in solution, to regenerate the white liquor used in the pulping process through an equilibrium reaction (Na2S is shown since it is part of the green liquor, but does not participate in the reaction):

[ "Kraft paper", "Pulp (paper)", "Kappa number", "Elemental chlorine free", "White liquor", "residual lignin", "Green liquor" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map