Glucose-6-phosphate dehydrogenase deficiency

Glucose-6-phosphate dehydrogenase deficiency (G6PDD) is an inborn error of metabolism that predisposes to red blood cell breakdown. Most of the time, those who are affected have no symptoms. Following a specific trigger, symptoms such as yellowish skin, dark urine, shortness of breath, and feeling tired may develop. Complications can include anemia and newborn jaundice. Some people never have symptoms. Glucose-6-phosphate dehydrogenase deficiency (G6PDD) is an inborn error of metabolism that predisposes to red blood cell breakdown. Most of the time, those who are affected have no symptoms. Following a specific trigger, symptoms such as yellowish skin, dark urine, shortness of breath, and feeling tired may develop. Complications can include anemia and newborn jaundice. Some people never have symptoms. It is an X-linked recessive disorder that results in defective glucose-6-phosphate dehydrogenase enzyme. Red blood cell breakdown may be triggered by infections, certain medication, stress, or foods such as fava beans. Depending on the specific mutation the severity of the condition may vary. Diagnosis is based on symptoms and supported by blood tests and genetic testing. Avoiding triggers is important. Treatment of acute episodes may include medications for infection, stopping the offending medication, or blood transfusions. Jaundice in newborns may be treated with bili lights. It is recommended that people be tested for G6PDD before certain medications, such as primaquine, are taken. About 400 million people have the condition globally. It is particularly common in certain parts of Africa, Asia, the Mediterranean, and the Middle East. Males are affected more often than females. In 2015 it is believed to have resulted in 33,000 deaths. Carriers of the G6PDD allele may be partially protected against malaria. Most individuals with G6PD deficiency are asymptomatic. Symptomatic patients are almost exclusively male, due to the X-linked pattern of inheritance, but female carriers can be clinically affected due to unfavorable lyonization, where random inactivation of an X-chromosome in certain cells creates a population of G6PD-deficient red blood cells coexisting with unaffected red blood cells. A female with one affected X chromosome will show the deficiency in approximately half of her red blood cells. However, in rare cases, including double X-deficiency, the ratio can be much more than half, making the individual almost as sensitive as males. Red blood cell breakdown (also known as hemolysis) in G6PD deficiency can manifest in a number of ways, including the following: Favism is a hemolytic response to the consumption of fava beans, also known as broad beans. Though all individuals with favism show G6PD deficiency, not all individuals with G6PD deficiency show favism. The condition is known to be more prevalent in infants and children, and G6PD genetic variant can influence chemical sensitivity. Other than this, the specifics of the chemical relationship between favism and G6PD are not well understood.

[ "Dehydrogenase", "Glucose-6-phosphate dehydrogenase", "Biochemistry", "Internal medicine", "Endocrinology", "G6PD CHATHAM", "G6PD MAHIDOL", "G6PD CANTON", "G6PD KAIPING", "G6PD VIANGCHAN" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map