language-iconOld Web
English
Sign In

PSEN1

2KR6, 5A63, 4UIS, 5FN3, 5FN4, 5FN5, 5FN2566319164ENSG00000080815ENSMUSG00000019969P49768P49769NM_000021NM_007318NM_007319NM_008943NM_001362271NP_000012NP_015557NP_032969NP_001349200Presenilin-1 (PS-1) is a presenilin protein that in humans is encoded by the PSEN1 gene. Presenilin-1 is one of the four core proteins in the gamma secretase complex, which is considered to play an important role in generation of amyloid beta (Aβ) from amyloid precursor protein (APP). Accumulation of amyloid beta is associated with the onset of Alzheimer's disease. Presenilin-1 (PS-1) is a presenilin protein that in humans is encoded by the PSEN1 gene. Presenilin-1 is one of the four core proteins in the gamma secretase complex, which is considered to play an important role in generation of amyloid beta (Aβ) from amyloid precursor protein (APP). Accumulation of amyloid beta is associated with the onset of Alzheimer's disease. Presenilin possesses a 9 transmembrane domain topology, with an extracellular C-terminus and a cytosolic N-terminus. Presenilin undergoes endo-proteolytic processing to produce ~27-28 kDa N-terminal and ~16-17 kDa C-terminal fragments in humans. Furthermore, presenilin exists in the cell mainly as a heterodimer of the C-terminal and N-terminus fragments. When presenilin 1 is overexpressed, the full length protein accumulates in an inactive form. Based on evidence that a gamma-secretase inhibitor binds to the fragments, the cleaved presenilin complex is considered to be the active form. Presenilins are postulated to regulate APP processing through their effects on gamma secretase, an enzyme that cleaves APP. Also, it is thought that the presenilins are involved in the cleavage of the Notch receptor, such that they either directly regulate gamma secretase activity or themselves are protease enzymes. Multiple alternatively spliced transcript variants have been identified for this gene, the full-length natures of only some have been determined. In Notch signaling, critical proteolytic reactions takes place during maturation and activation of Notch membrane receptor. Notch1 is cleaved extracellularlly at site1 (S1) and two polypeptides are produced to form a heterodimer receptor on the cell surface. After the formation of receptor, Notch1 is further cleaved in site 3(S3) and release Notch1 intracellular domain (NICD) from the membrane. Presenilin 1 has been shown to play an important role in proteolytic process. In the prenilin 1 null mutant drosophila, Notch signaling is abolished and it displays a notch-like lethal phenotype. Moreover, in mammalian cells, deficiency of PSEN1 also causes the defect in the proteolytic release of NICD from a truncated Notch construct. The same step can be also blocked by several gamma-secretase inhibitors, shown in the same study. These evidences collectively suggest a critical role of presenilin 1 in the Notch signaling pathway. Wnt signaling pathway has been shown to be involved in several critical steps in embryogenesis and development. Presenilin 1 has been shown to form a complex with beta-catenin, an important component in Wnt signaling, and stabilize beta-catenin. Mutant of presenilin-1 that reduces the ability to stabilize beta-catenin complex leads to hyperactive degradation of beta-catenin in the brains of transgenic mice. Considered as a negative regulator in wnt signaling pathway, presenilin-1 was also found to play a role in beta-catenin phosphorylation. Beta-catenin is coupled by presenilin-1 and undergoes a sequential phosphorylation by two kinase activities. The study also further illustrates that the deficiency of presenilin 1 disconnects the sequential phosphorylation and thus disrupts the normal wnt signaling pathway. Transgenic mice that over-expressed mutant presenilin-1 show an increase of beta-amyloid-42(43) in the brain, which suggest presenilin-1 plays an important role in beta-amyloid regulation and can be highly related to Alzheimer's disease. Further study conducted in neuronal cultures derived from presenilin-1 deficient mouse embryos. They showed that cleavage by alpha- and beta- secretase was still normal without the presence of presenilin-1. Meanwhile, the cleavage by gamma-cleavage of the transmembrane domain of APP was abolished. A 5-fold drop of amyloid peptide was observed, suggesting that deficiency of presenilin-1 can down regulate amyloid and inhibition of presenilin-1 can be a potential method for anti-amyloidogenic therapy in Alzheimer's disease. Extensive study on the role of presenilin-1 in amyloid production has been conducted to improve our understanding of Alzheimer's disease. Alzheimer's disease (AD) patients with an inherited form of the disease may carry mutations in the presenilin proteins (PSEN1; PSEN2) or the amyloid precursor protein (APP). These disease-linked mutations result in increased production of the longer form of amyloid beta (main component of amyloid deposits found in AD brains). These mutations result in early-onset Alzheimer's Disease, which is a rare form of the disease. These rare genetic variants are autosomal dominant.

[ "Amyloid", "Dominance (genetics)", "Alzheimer's disease", "Dementia", "Amyloid precursor protein" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map