language-iconOld Web
English
Sign In

Maternal effect

A maternal effect is a situation where the phenotype of an organism is determined not only by the environment it experiences and its genotype, but also by the environment and genotype of its mother. In genetics, maternal effects occur when an organism shows the phenotype expected from the genotype of the mother, irrespective of its own genotype, often due to the mother supplying messenger RNA or proteins to the egg. Maternal effects can also be caused by the maternal environment independent of genotype, sometimes controlling the size, sex, or behaviour of the offspring. These adaptive maternal effects lead to phenotypes of offspring that increase their fitness. Further, it introduces the concept of phenotypic plasticity, an important evolutionary concept. It has been proposed that maternal effects are important for the evolution of adaptive responses to environmental heterogeneity. A maternal effect is a situation where the phenotype of an organism is determined not only by the environment it experiences and its genotype, but also by the environment and genotype of its mother. In genetics, maternal effects occur when an organism shows the phenotype expected from the genotype of the mother, irrespective of its own genotype, often due to the mother supplying messenger RNA or proteins to the egg. Maternal effects can also be caused by the maternal environment independent of genotype, sometimes controlling the size, sex, or behaviour of the offspring. These adaptive maternal effects lead to phenotypes of offspring that increase their fitness. Further, it introduces the concept of phenotypic plasticity, an important evolutionary concept. It has been proposed that maternal effects are important for the evolution of adaptive responses to environmental heterogeneity. In genetics, a maternal effect occurs when the phenotype of an organism is determined by the genotype of its mother. For example, if a mutation is maternal effect recessive, then a female homozygous for the mutation may appear phenotypically normal, however her offspring will show the mutant phenotype, even if they are heterozygous for the mutation. Maternal effects often occur because the mother supplies a particular mRNA or protein to the oocyte, hence the maternal genome determines whether the molecule is functional. Maternal supply of mRNAs to the early embryo is important, as in many organisms the embryo is initially transcriptionally inactive. Because of the inheritance pattern of maternal effect mutations, special genetic screens are required to identify them. These typically involve examining the phenotype of the organisms one generation later than in a conventional (zygotic) screen, as their mothers will be potentially homozygous for maternal effect mutations that arise. A Drosophila melanogaster oocyte develops in an egg chamber in close association with a set of cells called nurse cells. Both the oocyte and the nurse cells are descended from a single germline stem cell, however cytokinesis is incomplete in these cell divisions, and the cytoplasm of the nurse cells and the oocyte is connected by structures known as ring canals. Only the oocyte undergoes meiosis and contributes DNA to the next generation. Many maternal effect Drosophila mutants have been found that affect the early steps in embryogenesis such as axis determination, including bicoid, dorsal, gurken and oskar. For example, embryos from homozygous bicoid mothers fail to produce head and thorax structures. Once the gene that is disrupted in the bicoid mutant was identified, it was shown that bicoid mRNA is transcribed in the nurse cells and then relocalized to the oocyte. Other maternal effect mutants either affect products that are similarly produced in the nurse cells and act in the oocyte, or parts of the transportation machinery that are required for this relocalization. Since these genes are expressed in the (maternal) nurse cells and not in the oocyte or fertilised embryo, the maternal genotype determines whether they can function. Maternal effect genes are expresses during oogenesis by the mother (expressed prior to fertilization) and develop the anterior-posterior and dorsal ventral polarity of the egg. The anterior end of the egg becomes the head; posterior end becomes the tail. the dorsal side is on the top; the ventral side is in underneath. The products of maternal effect genes called maternal m RNAs are produced nurse cell and fol ice cells and deposited in the egg cells (oocytes). At the start of development process, m RNA gradients are formed in oocytes along anterior-posterior and dorsal ventral axes.

[ "Offspring", "Phenotype", "Paternal Effects", "Tabapua cattle", "maternal hormones", "Tuli cattle", "Afrikaner cattle" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map