language-iconOld Web
English
Sign In

Cutibacterium acnes

Cutibacterium acnes (formerly Propionibacterium acnes) is the relatively slow-growing, typically aerotolerant anaerobic, Gram-positive bacterium (rod) linked to the skin condition of acne; it can also cause chronic blepharitis and endophthalmitis, the latter particularly following intraocular surgery. Its genome has been sequenced and a study has shown several genes can generate enzymes for degrading skin and proteins that may be immunogenic (activating the immune system). The species is largely commensal and part of the skin flora present on most healthy adult humans' skin. It is usually just barely detectable on the skin of healthy preadolescents. It lives, among other things, primarily on fatty acids in sebum secreted by sebaceous glands in the follicles. It may also be found throughout the gastrointestinal tract. Originally identified as Bacillus acnes, it was later named Propionibacterium acnes for its ability to generate propionic acid. In 2016, P. acnes was taxonomically reclassified as a result of biochemical and genomic studies. In terms of both phylogenetic tree structure and DNA G + C content, the cutaneous species was distinguishable from other species that had been previously categorized as P. acnes. As part of restructuring, the novel genus Cutibacterium was created for the cutaneous species, including those formerly identified as Propionibacterium acnes, Propionibacterium avidum, and Propionibacterium granulosum. Characterization of phylotypes of C. acnes is an active field of research. C. acnes bacteria predominantly live deep within follicles and pores, although they are also found on the surface of healthy skin. In these follicles, C. acnes bacteria use sebum, cellular debris and metabolic byproducts from the surrounding skin tissue as their primary sources of energy and nutrients. Elevated production of sebum by hyperactive sebaceous glands (sebaceous hyperplasia) or blockage of the follicle can cause C. acnes bacteria to grow and multiply. C. acnes bacteria secrete many proteins, including several digestive enzymes. These enzymes are involved in the digestion of sebum and the acquisition of other nutrients. They can also destabilize the layers of cells that form the walls of the follicle. The cellular damage, metabolic byproducts and bacterial debris produced by the rapid growth of C. acnes in follicles can trigger inflammation. This inflammation can lead to the symptoms associated with some common skin disorders, such as folliculitis and acne vulgaris. The damage caused by C. acnes and the associated inflammation make the affected tissue more susceptible to colonization by opportunistic bacteria, such as Staphylococcus aureus. Preliminary research shows healthy pores are only colonized by C. acnes, while unhealthy ones universally include the nonpore-resident Staphylococcus epidermidis, amongst other bacterial contaminants. Whether this is a root causality, just opportunistic and a side effect, or a more complex pathological duality between C. acnes and this particular Staphylococcus species is not known. C. acnes has also been found in corneal ulcers, and is a common cause of chronic endophthalmitis following cataract surgery. Rarely, it infects heart valves leading to endocarditis, and infections of joints (septic arthritis) have been reported. Furthermore, Cutibacterium species have been found in ventriculostomy insertion sites, and areas subcutaneous to suture sites in patients who have undergone craniotomy. It is a common contaminant in blood and cerebrospinal fluid cultures. C. acnes has been found in herniated discs. The propionic acid which it secretes creates micro-fractures of the surrounding bone. These micro-fractures are sensitive and it has been found that antibiotics have been helpful in resolving this type of low back pain.

[ "Propionibacterium acnes", "Cutibacterium" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map