language-iconOld Web
English
Sign In

Inverse beta decay

Inverse beta decay, commonly abbreviated to IBD, is a nuclear reaction involving electron antineutrino scattering off a proton, creating a positron and a neutron. This process is commonly used in the detection of electron antineutrinos in neutrino detectors, such as the first detection of antineutrinos in the Cowan–Reines neutrino experiment, or in neutrino experiments such as KamLAND and Borexino. It is an essential process to experiments involving low-energy neutrinos (< 60 MeV) such as those studying neutrino oscillation, reactor neutrinos, sterile neutrinos, and geoneutrinos. The IBD reaction can only be used to detect antineutrinos (rather than normal matter neutrinos, such as from the Sun) due to lepton conservation. Inverse beta decay, commonly abbreviated to IBD, is a nuclear reaction involving electron antineutrino scattering off a proton, creating a positron and a neutron. This process is commonly used in the detection of electron antineutrinos in neutrino detectors, such as the first detection of antineutrinos in the Cowan–Reines neutrino experiment, or in neutrino experiments such as KamLAND and Borexino. It is an essential process to experiments involving low-energy neutrinos (< 60 MeV) such as those studying neutrino oscillation, reactor neutrinos, sterile neutrinos, and geoneutrinos. The IBD reaction can only be used to detect antineutrinos (rather than normal matter neutrinos, such as from the Sun) due to lepton conservation.

[ "Neutrino detector", "Neutrino oscillation", "Scintillator" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map