language-iconOld Web
English
Sign In

Elemental analysis

Elemental analysis is a process where a sample of some material (e.g., soil, waste or drinking water, bodily fluids, minerals, chemical compounds) is analyzed for its elemental and sometimes isotopic composition. Elemental analysis can be qualitative (determining what elements are present), and it can be quantitative (determining how much of each are present). Elemental analysis falls within the ambit of analytical chemistry, the set of instruments involved in deciphering the chemical nature of our world. Elemental analysis is a process where a sample of some material (e.g., soil, waste or drinking water, bodily fluids, minerals, chemical compounds) is analyzed for its elemental and sometimes isotopic composition. Elemental analysis can be qualitative (determining what elements are present), and it can be quantitative (determining how much of each are present). Elemental analysis falls within the ambit of analytical chemistry, the set of instruments involved in deciphering the chemical nature of our world. Antoine Lavoisier is regarded as the inventor of elemental analysis as a quantitative, experimental tool to assess the chemical composition of a compound. At the time elemental analysis was based on gravimetric determination of specific adsorbant materials before and after selective adsorption of the combustion gases. Today fully automated systems based on thermal conductivity or infrared spectroscopy detection of the combustion gases, or other spectroscopic methods are used. For organic chemists, elemental analysis or 'EA' almost always refers to CHNX analysis—the determination of the mass fractions of carbon, hydrogen, nitrogen, and heteroatoms (X) (halogens, sulfur) of a sample. This information is important to help determine the structure of an unknown compound, as well as to help ascertain the structure and purity of a synthesized compound. In present day organic chemistry spectroscopic technics (NMR, both 1H and 13C), mass spectrometry and chromatographic procedures have replaced EA as the primary technique for structural determination, although it still gives very useful complementary information. It is also the fastest and most inexpensive method to determine sample purity. The most common form of elemental analysis, CHNS analysis, is accomplished by combustion analysis. In this technique, a sample is burned in an excess of oxygen and various traps, collecting the combustion products: carbon dioxide, water, and nitric oxide. The masses of these combustion products can be used to calculate the composition of the unknown sample. Modern elemental analyzers are also capable of simultaneous determination of sulfur along with CHN in the same measurement run. Quantitative analysis is the determination of the mass of each element or compound present. Other quantitative methods include gravimetry, optical atomic spectroscopy, and neutron activation analysis.

[ "Ligand", "Analytical chemistry", "Organic chemistry", "Inorganic chemistry", "Acetylthiourea", "Molar conductivity", "molar conductance", "Benzhydrazone", "Clathrochelate" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map