language-iconOld Web
English
Sign In

Random matrix

In probability theory and mathematical physics, a random matrix is a matrix-valued random variable—that is, a matrix in which some or all elements are random variables. Many important properties of physical systems can be represented mathematically as matrix problems. For example, the thermal conductivity of a lattice can be computed from the dynamical matrix of the particle-particle interactions within the lattice. In probability theory and mathematical physics, a random matrix is a matrix-valued random variable—that is, a matrix in which some or all elements are random variables. Many important properties of physical systems can be represented mathematically as matrix problems. For example, the thermal conductivity of a lattice can be computed from the dynamical matrix of the particle-particle interactions within the lattice. In nuclear physics, random matrices were introduced by Eugene Wigner to model the nuclei of heavy atoms. He postulated that the spacings between the lines in the spectrum of a heavy atom nucleus should resemble the spacings between the eigenvalues of a random matrix, and should depend only on the symmetry class of the underlying evolution. In solid-state physics, random matrices model the behaviour of large disordered Hamiltonians in the mean field approximation. In quantum chaos, the Bohigas–Giannoni–Schmit (BGS) conjecture asserts that the spectral statistics of quantum systems whose classical counterparts exhibit chaotic behaviour are described by random matrix theory. In quantum optics, transformations described by random unitary matrices are crucial for demonstrating the advantage of quantum over classical computation (see, e.g., the boson sampling model). Moreover, such random unitary transformations can be directly implemented in an optical circuit, by mapping their parameters to optical circuit components (that is beam splitters and phase shifters). Random matrix theory has also found applications to the chiral Dirac operator in quantum chromodynamics, quantum gravity in two dimensions, mesoscopic physics,spin-transfer torque, the fractional quantum Hall effect, Anderson localization, quantum dots, and superconductors In multivariate statistics, random matrices were introduced by John Wishart for statistical analysis of large samples; see estimation of covariance matrices. Significant results have been shown that extend the classical scalar Chernoff, Bernstein, and Hoeffding inequalities to the largest eigenvalues of finite sums of random Hermitian matrices. Corollary results are derived for the maximum singular values of rectangular matrices. In numerical analysis, random matrices have been used since the work of John von Neumann and Herman Goldstine to describe computation errors in operations such as matrix multiplication. See also for more recent results. In number theory, the distribution of zeros of the Riemann zeta function (and other L-functions) is modelled by the distribution of eigenvalues of certain random matrices. The connection was first discovered by Hugh Montgomery and Freeman J. Dyson. It is connected to the Hilbert–Pólya conjecture.

[ "Matrix (mathematics)", "Eigenvalues and eigenvectors", "Circular ensemble", "Level-spacing distribution", "Free convolution", "Weingarten function", "eigenvalue distribution" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map