language-iconOld Web
English
Sign In

Phytophthora infestans

Phytophthora infestans is an oomycete or water mold, a microorganism that causes the serious potato and tomato disease known as late blight or potato blight. (Early blight, caused by Alternaria solani, is also often called 'potato blight'.) Late blight was a major culprit in the 1840s European, the 1845 Irish, and the 1846 Highland potato famines. The organism can also infect some other members of the Solanaceae. The pathogen is favored by moist, cool environments: sporulation is optimal at 12–18 °C in water-saturated or nearly saturated environments, and zoospore production is favored at temperatures below 15 °C. Lesion growth rates are typically optimal at a slightly warmer temperature range of 20 to 24 °C. The genus name Phytophthora comes from the Greek φυτό–(phyto), meaning : 'plant' – plus the Greek φθορά (phthora), meaning : 'decay, ruin, perish'. The species name infestans is the present participle of the Latin verb infestare, meaning : 'attacking, destroying', from which we get the word 'to infest'. The asexual life cycle of Phytophthora infestans is characterized by alternating phases of hyphal growth, sporulation, sporangia germination (either through zoospore release or direct germination, i.e. germ tube emergence from the sporangium), and the re-establishment of hyphal growth. There is also a sexual cycle, which occurs when isolates of opposite mating type (A1 and A2) meet. Hormonal communication triggers the formation of the sexual spores, called oospores. The different types of spores play major roles in the dissemination and survival of P. infestans. Sporangia are spread by wind or water and enable the movement of P. infestans between different host plants. The zoospores released from sporangia are biflagellated and chemotactic, allowing further movement of P. infestans on water films found on leaves or soils. Both sporangia and zoospores are short-lived, in contrast to oospores which can persist in a viable form for many years. The color of potato sign is white. People can observe Phytophthora infestans produce sporangia and sporangiophores on the surface of potato stems and leaves. These sporangia and sporangiophores always appear on the lower surface of the foliage. As for tuber blight, the white mycelium often shows on the tubers' surface. Under ideal conditions, the life cycle can be completed on potato or tomato foliage in about five days. Sporangia develop on the leaves, spreading through the crop when temperatures are above 10 °C (50 °F) and humidity is over 75–80% for 2 days or more. Rain can wash spores into the soil where they infect young tubers, and the spores can also travel long distances on the wind. The early stages of blight are easily missed. Symptoms include the appearance of dark blotches on leaf tips and plant stems. White mold will appear under the leaves in humid conditions and the whole plant may quickly collapse. Infected tubers develop grey or dark patches that are reddish brown beneath the skin, and quickly decay to a foul-smelling mush caused by the infestation of secondary soft bacterial rots. Seemingly healthy tubers may rot later when in store. P. infestans survives poorly in nature apart from its plant hosts. Under most conditions, the hyphae and asexual sporangia can survive for only brief periods in plant debris or soil, and are generally killed off during frosts or very warm weather. The exceptions involve oospores, and hyphae present within tubers. The persistence of viable pathogen within tubers, such as those that are left in the ground after the previous year's harvest or left in cull piles is a major problem in disease management. In particular, volunteer plants sprouting from infected tubers are thought to be a major source of inoculum at the start of a growing season. This can have devastating effects by destroying entire crops. P. infestans is diploid, with about 11–13 chromosomes, and in 2009 scientists completed the sequencing of its genome. The genome was found to be considerably larger (240 Mbp) than that of most other Phytophthora species whose genomes have been sequenced; Phytophthora sojae has a 95 Mbp genome and Phytophthora ramorum had a 65 Mbp genome. About 18,000 genes were detected within the P. infestans genome. It also contained a diverse variety of transposons and many gene families encoding for effector proteins that are involved in causing pathogenicity. These proteins are split into two main groups depending on whether they are produced by the water mould in the symplast (inside plant cells) or in the apoplast (between plant cells). Proteins produced in the symplast included RXLR proteins, which contain an arginine-X-leucine-arginine (where X can be any amino acid) sequence at the amino terminus of the protein. Some RXLR proteins are avirulence proteins, meaning that they can be detected by the plant and lead to a hypersensitive response which restricts the growth of the pathogen. P. infestans was found to encode around 60% more of these proteins than most other Phytophthora species. Those found in the apoplast include hydrolytic enzymes such as proteases, lipases and glycosylases that act to degrade plant tissue, enzyme inhibitors to protect against host defence enzymes and necrotizing toxins. Overall the genome was found to have an extremely high repeat content (around 74%) and to have an unusual gene distribution in that some areas contain many genes whereas others contain very few. The highlands of central Mexico are considered by many to be the center of origin of P. infestans, although others have proposed its origin to be in the Andes, which is also the origin of potatoes. A recent study evaluated these two alternate hypotheses and found conclusive support for central Mexico being the center of origin. Support for Mexico comes from multiple observations including the fact that populations are genetically most diverse in Mexico, late blight is observed in native tuber-bearing Solanum species, populations of the pathogen are in Hardy-Weinberg equilibrium, the two mating types occur in a 1:1 ratio, and detailed phylogeographic and evolutionary studies. Furthermore, the closest relatives of P. infestans, namely P. mirabilis and P. ipomoeae are endemic to central Mexico. On the other hand, the only close relative found in South America, namely P. andina, is a hybrid that does not share a single common ancestor with P. infestans. Finally, populations of P. infestans in South America lack genetic diversity and are clonal.

[ "Blight", "Gene", "Phytophthora mirabilis", "Colneleic acid", "Phytophthora andina", "Potato late blight fungus", "Phytophthora infestan" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map