language-iconOld Web
English
Sign In

Powered exoskeleton

A powered exoskeleton (also known as power armor, powered armor, powered suit, exoframe, hardsuit or exosuit) is a wearable mobile machine that is powered by a system of electric motors, pneumatics, levers, hydraulics, or a combination of technologies that allow for limb movement with increased strength and endurance. A powered exoskeleton (also known as power armor, powered armor, powered suit, exoframe, hardsuit or exosuit) is a wearable mobile machine that is powered by a system of electric motors, pneumatics, levers, hydraulics, or a combination of technologies that allow for limb movement with increased strength and endurance. The earliest known exoskeleton-like device was a set of walking, jumping and running assisted apparatus developed in 1890 by a Russian, Nicholas Yagin. It used energy stored in compressed gas bags to assist in movement, although it was passive and required human power. In 1917, United States inventor Leslie C. Kelley developed what he called a pedometer, which operated on steam power with artificial ligaments acting in parallel to the wearer's movements. This system was able to supplement human power with external power. In the 1960s, the first true 'mobile machines' integrated with human movements began to appear. A suit called Hardiman was co-developed by General Electric and the US Armed Forces. The suit was powered by hydraulics and electricity and amplified the wearer's strength by a factor of 25, so that lifting 110 kilograms (250 lb) would feel like lifting 4.5 kilograms (10 lb). A feature called force feedback enabled the wearer to feel the forces and objects being manipulated. The Hardiman had major limitations, including its 680-kilogram (1,500 lb) weight. It was also designed as a master-slave system: the operator was in a master suit surrounded by the exterior slave suit, which performed work in response to the operator's movements. The response time for the slave suit was slow compared to a suit constructed of a single layer, and bugs caused 'violent and uncontrollable motion by the machine' when moving both legs simultaneously. Hardiman's slow walking speed of 0.76 metres per second (2.5 ft/s or just under 2 mph) further limited practical uses, and the project was not successful. At about the same time, early active exoskeletons and humanoid robots were developed at the Mihajlo Pupin Institute in Serbia by a team led by Prof. Miomir Vukobratović. Legged locomotion systems were developed first, with the goal of assisting in the rehabilitation of paraplegics. In the course of developing active exoskeletons, the Institute also developed theory to aid in the analysis and control of the human gait. Some of this work informed the development of modern high-performance humanoid robots. In 1972, an active exoskeleton for rehabilitation of paraplegics that was pneumatically powered and electronically programmed was tested at Belgrade Orthopedic Clinic. In 1985, an engineer at Los Alamos National Laboratory proposed an exoskeleton called Pitman, a powered suit of armor for infantrymen. The design included brain-scanning sensors in the helmet and was considered too futuristic; it was never built. In 1986, an exoskeleton called the Lifesuit was designed by Monty Reed, a US Army Ranger who had broken his back in a parachute accident. While recovering in the hospital, he read Robert Heinlein's science fiction novel Starship Troopers, and Heinlein's description of mobile infantry power suits inspired Reed to design a supportive exoskeleton. In 2001, Reed began working full time on the project, and in 2005 he wore the 12th prototype in the Saint Patrick's Day Dash foot race in Seattle, Washington. Reed claims to have set the speed record for walking in robot suits by completing the 4.8-kilometre (3 mi) race at an average speed of 4.0 kilometres per hour (2.5 mph). The Lifesuit prototype 14 can walk 1.6 km (1 mi) on a full charge and lift 92 kg (203 lb) for the wearer. Powered exoskeletons can improve the quality of life of individuals who have lost the use of their legs by enabling system-assisted walking. Exoskeletons can also help with the rehabilitation of patients suffering from stroke or spinal cord injury. Such exoskeletons may also be called 'step rehabilitation robots'. Several projects in this area are ongoing, such as LOPES (lower-extremity powered exoskeleton), Lokomat, UniExo, GAIT – ESBiRRo, and the Hybrid Assisted Limb (HAL). The Esko GT, made by Ekso Bionics, is the first exoskeleton to be approved by the US Food and Drug Administration (FDA) for stroke patients. The German Research Centre for Artificial Intelligence has developed two general purpose powered exoskeletons, CAPIO and VI-Bot. These are primarily being used for teleoperation.

[ "Robot", "Exoskeleton", "Gait", "Rehabilitation" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map