language-iconOld Web
English
Sign In

Packed red blood cells

Packed red blood cells, also known as packed cells, are red blood cells that have been separated for blood transfusion. They are typically used in anemia that is either causing symptoms or when the hemoglobin is less than usually 70–80 g/L (7–8 g/dL). In adults, one unit brings up hemoglobin levels by about 10 g/L (1 g/dL). Repeated transfusions may be required in people receiving cancer chemotherapy or who have hemoglobin disorders. Cross matching is typically required before the blood is given. It is given by injection into a vein. Packed red blood cells, also known as packed cells, are red blood cells that have been separated for blood transfusion. They are typically used in anemia that is either causing symptoms or when the hemoglobin is less than usually 70–80 g/L (7–8 g/dL). In adults, one unit brings up hemoglobin levels by about 10 g/L (1 g/dL). Repeated transfusions may be required in people receiving cancer chemotherapy or who have hemoglobin disorders. Cross matching is typically required before the blood is given. It is given by injection into a vein. Side effects include allergic reactions such as anaphylaxis, red blood cell breakdown, infection, volume overload, and lung injury. With current preparation methods in the developed world the risk of viral infections such as hepatitis C and HIV/AIDS are less than one in a million. However, the risks of infection are higher in low income countries. Packed red blood cells are produced from whole blood or by apheresis. They typically last for three to six weeks. The widespread use of packed red blood cells began in the 1960s. It is on the World Health Organization's List of Essential Medicines, the most effective and safe medicines needed in a health system. In the United Kingdom they cost about £120 per unit. A number of other versions also exist including whole blood, leukocyte reduced red blood cells, and washed red blood cells. RBCs are used to restore oxygen-carrying capacity in people with anemia due to trauma or other medical problems, and are by far the most common blood component used in transfusion medicine. Historically they were transfused as part of whole blood, but are now typically used separately as RBCs and plasma components. More than 100 million units of blood are collected each year around the world, and about 50% of these are given to people in high income countries. In low-income countries, the majority of blood transfusions (up to 65%) are given to children under 5 years of age to treat severe childhood anemia. Another major use of blood in low income countries is to treat pregnancy-related complications. Whereas in high-income countries, most blood transfusions are given to people over 65 years of age (up to 76%). In these countries transfusion are most commonly used for supportive care in heart surgery, transplant surgery, massive trauma, and therapy for solid and blood cancers. Due to changes in surgical practices, medical use of blood is now the major use of red blood cells in high-income countries. Whenever a red cell transfusion is being considered for an individual patient it is good practice to consider not only the hemoglobin level, but also the overall clinical context, patient preferences, and whether there are alternative treatments. If a patient is stable and has a hematinic deficiency they should be treated for the deficiency (iron deficiency, B12 deficiency, or folate deficiency) rather than being given a red cell transfusion. Blood transfusion is typically recommended when hemoglobin levels reach 70 g/L (7 g/dL) in those who have stable vital signs, unless they have anemia due to a hematinic deficiency. Transfusing at a restrictive hemoglobin threshold of between 70 g/L to 80 g/L (7 to 8g/dL) decreased the proportion of people given a red blood cell transfusion by 43% across a broad range of clinical specialities, including those people who are critically ill. There is no evidence that a restrictive transfusion strategy affects death or major adverse events (e.g. cardiac events, myocardial infarction, stroke, pneumonia, thromboembolism, infection) compared with a liberal transfusion strategy. There is not enough information in some patient groups to say whether a restrictive or liberal transfusion threshold is better. This refers to transfusing a single unit or bag of red blood cells to a person who is not bleeding and haemodynamically stable followed by an assessment to see if further transfusion is required. The benefits of single unit transfusion include reduced exposure to blood products. Each unit transfused increases the associated risks of transfusion such as infection, transfusion associated circulatory overload and other side effects. Transfusion of a single unit also encourages less wastage of red blood cells.

[ "Platelet", "Diabetes mellitus", "Blood transfusion", "Packed Red Blood Cell Transfusion", "PRBC Transfusion", "Blood product type", "Blood product units" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map