language-iconOld Web
English
Sign In

Limnology

Limnology (/lɪmˈnɒlədʒi/ lim-NOL-ə-jee; from Greek λίμνη, limne, 'lake' and λόγος, logos, 'knowledge'), is the study of inland aquatic ecosystems. The study of limnology includes aspects of the biological, chemical, physical, and geological characteristics and functions of inland waters (running and standing waters, fresh and saline, natural or man-made). This includes the study of lakes, reservoirs, ponds, rivers, springs, streams, wetlands, and groundwater. A more recent sub-discipline of limnology, termed landscape limnology, studies, manages, and seeks to conserve these ecosystems using a landscape perspective, by explicitly examining connections between an aquatic ecosystem and its watershed. Recently, the need to understand global inland waters as part of the Earth System created a sub-discipline called global limnology. This approach considers processes in inland waters on a global scale, like the role of inland aquatic ecosystems in global biogeochemical cycles. Limnology (/lɪmˈnɒlədʒi/ lim-NOL-ə-jee; from Greek λίμνη, limne, 'lake' and λόγος, logos, 'knowledge'), is the study of inland aquatic ecosystems. The study of limnology includes aspects of the biological, chemical, physical, and geological characteristics and functions of inland waters (running and standing waters, fresh and saline, natural or man-made). This includes the study of lakes, reservoirs, ponds, rivers, springs, streams, wetlands, and groundwater. A more recent sub-discipline of limnology, termed landscape limnology, studies, manages, and seeks to conserve these ecosystems using a landscape perspective, by explicitly examining connections between an aquatic ecosystem and its watershed. Recently, the need to understand global inland waters as part of the Earth System created a sub-discipline called global limnology. This approach considers processes in inland waters on a global scale, like the role of inland aquatic ecosystems in global biogeochemical cycles. Limnology is closely related to aquatic ecology and hydrobiology, which study aquatic organisms and their interactions with the abiotic (non-living) environment. While limnology has substantial overlap with freshwater-focused disciplines (e.g., freshwater biology), it also includes the study of inland salt lakes. The term limnology was coined by François-Alphonse Forel (1841–1912) who established the field with his studies of Lake Geneva. Interest in the discipline rapidly expanded, and in 1922 August Thienemann (a German zoologist) and Einar Naumann (a Swedish botanist) co-founded the International Society of Limnology (SIL, from Societas Internationalis Limnologiae). Forel's original definition of limnology, 'the oceanography of lakes', was expanded to encompass the study of all inland waters, and influenced Benedykt Dybowski's work on Lake Baikal. Prominent early American limnologists included G. Evelyn Hutchinson and Ed Deevey. At the University of Wisconsin-Madison, Edward A. Birge, Chancey Juday, and Arthur D. Hasler contributed to the development of the Center for Limnology. Physical properties of aquatic ecosystems are determined by a combination of heat, currents, waves and other seasonal distributions of environmental conditions. The morphometry of a body of water depends on the type of feature (such as a lake, river, stream, wetland, estuary etc.) and the structure of the earth surrounding the body of water. Lakes, for instance, are classified by their formation, and zones of lakes are defined by water depth. River and stream system morphometry is driven by underlying geology of the area as well as the general velocity of the water. Another type of aquatic system which falls within the study of limnology are estuaries. Estuaries are bodies of water classified by the interaction of a river and the ocean or sea. Wetlands vary in size, shape, and pattern however the most common types, marshes, bogs and swamps, often fluctuate between containing shallow, freshwater and being dry depending on the time of year. Light zonation is the concept of how the amount of sunlight penetration into water influences the structure of a body of water. These zones define various levels of productivity within an aquatic ecosystems such as a lake. For instance, the depth of the water column which sunlight is able to penetrate and where most plant life is able to grow is known as the photic or euphotic zone. The rest of the water column which is deeper and does not receive sufficient amounts of sunlight for plant growth is known as the aphotic zone. Similar to light zonation, thermal stratification or thermal zonation is a way of grouping parts of the water body within an aquatic system based on the temperature of different lake layers. The less turbid the water, the more light is able to penetrate, and thus heat is conveyed deeper in the water. Heating declines exponentially with depth in the water column, so the water will be warmest near the surface but progressively cooler as moving downwards. There are three main sections that define thermal stratification in a lake. The epilimnion is closest to the water surface and absorbs long- and shortwave radiation to warm the water surface. During cooler months, wind shear can contribute to cooling of the water surface. The thermocline is an area within the water column where water temperatures rapidly decrease. The bottom layer is the hypolimnion, which tends to have the coldest water because its depth restricts sunlight from reaching it. In temperate lakes, fall-season cooling of surface water results in turnover of the water column, where the thermocline is disrupted, and the lake temperature profile becomes more uniform. The chemical composition of water in aquatic ecosystems is influenced by natural characteristics and processes including precipitation, underlying soil and bedrock in the watershed, erosion, evaporation, and sedimentation. All bodies of water have a certain composition of both organic and inorganic elements and compounds. Biological reactions also affect the chemical properties of water. In addition to natural processes, human activities strongly influence the chemical composition of aquatic systems and their water quality. Dissolved oxygen and dissolved carbon dioxide are often discussed together due their coupled role in respiration and photosynthesis. Dissolved oxygen concentrations can be altered by physical, chemical, and biological processes and reaction. Physical processes including wind mixing can increase dissolved oxygen concentrations, particularly in surface waters of aquatic ecosystems. Because dissolved oxygen solubility is linked to water temperatures, changes in temperature affect dissolved oxygen concentrations as warmer water has a lower capacity to 'hold' oxygen as colder water. Biologically, both photosynthesis and aerobic respiration affect dissolved oxygen concentrations. Photosynthesis by autotrophic organisms, such as phytoplankton and aquatic algae, increases dissolved oxygen concentrations while simultaneously reducing carbon dioxide concentrations, since carbon dioxide is taken up during photosynthesis. All aerobic organisms in the aquatic environment take up dissolved oxygen during aerobic respiration, while carbon dioxide is released as a byproduct of this reaction. Because photosynthesis is light-limited, both photosynthesis and respiration occur during the daylight hours, while only respiration occurs during dark hours or in dark portions of an ecosystem. The balance between dissolved oxygen production and consumption is calculated as the aquatic metabolism rate.

[ "Ecology", "Hydrology", "Oceanography", "Landscape limnology" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map