language-iconOld Web
English
Sign In

Fiber Distributed Data Interface

Fiber Distributed Data Interface (FDDI) is a standard for data transmission in a local area network.It uses optical fiber as its standard underlying physical medium, although it was also later specified to use copper cable, in which case it may be called CDDI (Copper Distributed Data Interface), standardized as TP-PMD (Twisted-Pair Physical Medium-Dependent), also referred to as TP-DDI (Twisted-Pair Distributed Data Interface). Fiber Distributed Data Interface (FDDI) is a standard for data transmission in a local area network.It uses optical fiber as its standard underlying physical medium, although it was also later specified to use copper cable, in which case it may be called CDDI (Copper Distributed Data Interface), standardized as TP-PMD (Twisted-Pair Physical Medium-Dependent), also referred to as TP-DDI (Twisted-Pair Distributed Data Interface). FDDI was effectively made obsolete in local networks by Fast Ethernet which offered the same 100 Mbit/s speeds, but at a much lower cost and, since 1998, by Gigabit Ethernet due to its speed, and even lower cost, and ubiquity. FDDI provides a 100 Mbit/s optical standard for data transmission in local area network that can extend in range up to 200 kilometers (120 mi). Although FDDI logical topology is a ring-based token network, it did not use the IEEE 802.5 token ring protocol as its basis; instead, its protocol was derived from the IEEE 802.4 token bus timed token protocol. In addition to covering large geographical areas, FDDI local area networks can support thousands of users. FDDI offers both a Dual-Attached Station (DAS), counter-rotating token ring topology and a Single-Attached Station (SAS), token bus passing ring topology. FDDI, as a product of American National Standards Institute X3T9.5 (now X3T12), conforms to the Open Systems Interconnection (OSI) model of functional layering using other protocols. The standards process started in the mid 1980s.FDDI-II, a version of FDDI described in 1989, added circuit-switched service capability to the network so that it could also handle voice and video signals. Work started to connect FDDI networks to synchronous optical networking (SONET) technology. A FDDI network contains two rings, one as a secondary backup in case the primary ring fails. The primary ring offers up to 100 Mbit/s capacity. When a network has no requirement for the secondary ring to do backup, it can also carry data, extending capacity to 200 Mbit/s. The single ring can extend the maximum distance; a dual ring can extend 100 km (62 mi). FDDI had a larger maximum-frame size (4,352 bytes) than the standard Ethernet family, which only supports a maximum-frame size of 1,500 bytes, allowing better effective data rates in some cases. Designers normally constructed FDDI rings in a network topology such as a 'dual ring of trees'. A small number of devices, typically infrastructure devices such as routers and concentrators rather than host computers, were 'dual-attached' to both rings. Host computers then connect as single-attached devices to the routers or concentrators. The dual ring in its most degenerate form simply collapses into a single device. Typically, a computer-room contained the whole dual ring, although some implementations deployed FDDI as a metropolitan area network.

[ "Local area network", "Ethernet", "Protocol (object-oriented programming)", "Ring latency", "xpress transfer protocol" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map