language-iconOld Web
English
Sign In

Deep sea mining

Deep sea mining is a mineral retrieval process that takes place on the ocean floor. Ocean mining sites are usually around large areas of polymetallic nodules or active and extinct hydrothermal vents at 1,400 to 3,700 metres (4,600 to 12,100 ft) below the ocean’s surface. The vents create globular or massive sulfide deposits, which contain valuable metals such as silver, gold, copper, manganese, cobalt, and zinc. The deposits are mined using either hydraulic pumps or bucket systems that take ore to the surface to be processed. As with all mining operations, deep sea mining raises questions about its potential environmental impact. Environmental advocacy groups such as Greenpeace and the Deep sea Mining Campaign have argued that seabed mining should not be permitted in most of the world's oceans because of the potential for damage to deepsea ecosystems and pollution by heavy metal laden plumes. Deep sea mining is a mineral retrieval process that takes place on the ocean floor. Ocean mining sites are usually around large areas of polymetallic nodules or active and extinct hydrothermal vents at 1,400 to 3,700 metres (4,600 to 12,100 ft) below the ocean’s surface. The vents create globular or massive sulfide deposits, which contain valuable metals such as silver, gold, copper, manganese, cobalt, and zinc. The deposits are mined using either hydraulic pumps or bucket systems that take ore to the surface to be processed. As with all mining operations, deep sea mining raises questions about its potential environmental impact. Environmental advocacy groups such as Greenpeace and the Deep sea Mining Campaign have argued that seabed mining should not be permitted in most of the world's oceans because of the potential for damage to deepsea ecosystems and pollution by heavy metal laden plumes. In the 1960s the prospect of deep-sea mining was brought up by the publication of J. L. Mero's Mineral Resources of the Sea. The book claimed that nearly limitless supplies of cobalt, nickel and other metals could be found throughout the planet's oceans. Mero stated that these metals occurred in deposits of manganese nodules, which appear as lumps of compressed flowers on the seafloor at depths of about 5,000 m. Some nations including France, Germany and the United States sent out research vessels in search of nodule deposits. One such vessel was the Glomar Explorer. Initial estimates of deep sea mining viability turned out to be much exaggerated. This overestimate, coupled with depressed metal prices, led to the near abandonment of nodule mining by 1982. From the 1960s to 1984 an estimated US $650 million had been spent on the venture, with little to no return. Over the past decade a new phase of deep-sea mining has begun. Rising demand for precious metals in Japan, China, Korea and India has pushed these countries in search of new sources. Interest has recently shifted toward hydrothermal vents as the source of metals instead of scattered nodules. The trend of transition towards an electricity-based information and transportation infrastructure currently seen in western societies further pushes demands for precious metals. The current revived interest in phosphorus nodule mining at the seafloor stems from phosphor-based artificial fertilizers being of significant importance for world food production. Growing world population pushes the need for artificial fertilizers or greater incorporation of organic systems within agricultural infrastructure. Currently, the best potential deep sea site, the Solwara 1 Project, has been found in the waters off Papua New Guinea, a high grade copper-gold resource and the world's first Seafloor Massive Sulphide (SMS) resource. The Solwara 1 Project is located at 1600 metres water depth in the Bismarck Sea, New Ireland Province. Using ROV (remotely operated underwater vehicles) technology developed by UK-based Soil Machine Dynamics, Nautilus Minerals Inc. is first company of its kind to announce plans to begin full-scale undersea excavation of mineral deposits. However a dispute with the government of Papua-New Guinea delayed production and its now scheduled to commence commercial operations in early 2018. The world's first 'large-scale' mining of hydrothermal vent mineral deposits was carried out by Japan in August - September, 2017. Japan Oil, Gas and Metals National Corporation (JOGMEC) carried out this operation using the Research Vessel Hakurei. This mining was carried out at the 'Izena hole/cauldron' vent field within the hydrothermally active back-arc basin known as the Okinawa Trough which contains 15 confirmed vent fields according to the InterRidge Vents Database. The international law–based regulations on deep sea mining are contained in the United Nations Conventions on the Law of the Sea from 1973 to 1982, which came into force in 1994. The convention set up the International Seabed Authority (ISA), which regulates nations’ deep sea mining ventures outside each nations’ Exclusive Economic Zone (a 200-nautical-mile (370 km) area surrounding coastal nations). The ISA requires nations interested in mining to explore two equal mining sites and turn one over to the ISA, along with a transfer of mining technology over a 10- to 20-year period. This seemed reasonable at the time because it was widely believed that nodule mining would be extremely profitable. However, these strict requirements led some industrialized countries to refuse to sign the initial treaty in 1982. The US abides by the Deep Seabed Hard Mineral Resources Act, which was originally written in 1980. This legislations is largely recognized as one of the main concerns the US has with ratifying UNCLOS.

[ "Deep sea", "Seabed", "Oceanography", "Metallurgy" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map