language-iconOld Web
English
Sign In

Magnetosphere of Saturn

The magnetosphere of Saturn is the cavity created in the flow of the solar wind by the planet's internally generated magnetic field. Discovered in 1979 by the Pioneer 11 spacecraft, Saturn's magnetosphere is the second largest of any planet in the Solar System after Jupiter. The magnetopause, the boundary between Saturn's magnetosphere and the solar wind, is located at a distance of about 20 Saturn radii from the planet's center, while its magnetotail stretches hundreds of Saturn radii behind it. The magnetosphere of Saturn is the cavity created in the flow of the solar wind by the planet's internally generated magnetic field. Discovered in 1979 by the Pioneer 11 spacecraft, Saturn's magnetosphere is the second largest of any planet in the Solar System after Jupiter. The magnetopause, the boundary between Saturn's magnetosphere and the solar wind, is located at a distance of about 20 Saturn radii from the planet's center, while its magnetotail stretches hundreds of Saturn radii behind it. Saturn's magnetosphere is filled with plasmas originating from both the planet and its moons. The main source is the small moon Enceladus, which ejects as much as 1,000 kg/s of water vapor from the geysers on its south pole, a portion of which is ionized and forced to co-rotate with the Saturn’s magnetic field. This loads the field with as much as 100 kg of water group ions per second. This plasma gradually moves out from the inner magnetosphere via the interchange instability mechanism and then escapes through the magnetotail. The interaction between Saturn's magnetosphere and the solar wind generates bright oval aurorae around the planet's poles observed in visible, infrared and ultraviolet light. The aurorae are related to the powerful saturnian kilometric radiation (SKR), which spans the frequency interval between 100 kHz to 1300 kHz and was once thought to modulate with a period equal to the planet's rotation. However, later measurements showed that the periodicity of the SKR's modulation varies by as much as 1%, and so probably does not exactly coincide with Saturn’s true rotational period, which as of 2010 remains unknown. Inside the magnetosphere there are radiation belts, which house particles with energy as high as tens of megaelectronvolts. The energetic particles have significant influence on the surfaces of inner icy moons of Saturn. In 1980–1981 the magnetosphere of Saturn was studied by the Voyager spacecraft. Up until September 2017 it was a subject of ongoing investigation by Cassini mission, which arrived in 2004 and spent over 13 years observing the planet. Immediately after the discovery of Jupiter's decametric radio emissions in 1955, attempts were made to detect a similar emission from Saturn, but with inconclusive results. The first evidence that Saturn might have an internally generated magnetic field came in 1974, with the detection of weak radio emissions from the planet at the frequency of about 1 MHz. These medium wave emissions were modulated with a period of about 10 h 30 min, which was interpreted as Saturn's rotation period. Nevertheless, the evidence available in the 1970s was too inconclusive and some scientists thought that Saturn might lack a magnetic field altogether, while others even speculated that the planet could lie beyond the heliopause. The first definite detection of the saturnian magnetic field was made only on September 1, 1979, when it was passed through by the Pioneer 11 spacecraft, which measured its magnetic field strength directly. Like Jupiter's magnetic field, Saturn's is created by a fluid dynamo within a layer of circulating liquid metallic hydrogen in its outer core. Like Earth, Saturn's magnetic field is mostly a dipole, with north and south poles at the ends of a single magnetic axis. On Saturn, like on Jupiter, the north magnetic pole is located in the northern hemisphere, and the south magnetic pole lies in the southern hemisphere, so that magnetic field lines point away from the north pole and towards the south pole. This is reversed compared to the Earth, where the north magnetic pole lies in the southern hemisphere. Saturn's magnetic field also has quadrupole, octupole and higher components, though they are much weaker than the dipole. The magnetic field strength at Saturn's equator is about 21 μT (0.21 G), which corresponds to a dipole magnetic moment of about 4.6 × 1018 T•m3. This makes Saturn's magnetic field slightly weaker than Earth's; however, its magnetic moment is about 580 times larger. Saturn's magnetic dipole is strictly aligned with its rotational axis, meaning that the field, uniquely, is highly axisymmetric. The dipole is slightly shifted (by 0.037 Rs) along Saturn's rotational axis towards the north pole. Saturn's internal magnetic field deflects the solar wind, a stream of ionized particles emitted by the Sun, away from its surface, preventing it from interacting directly with its atmosphere and instead creating its own region, called a magnetosphere, composed of a plasma very different from that of the solar wind. The magnetosphere of Saturn is the second–largest magnetosphere in the Solar System after that of Jupiter.

[ "Solar wind", "Magnetosphere", "Interplanetary magnetic field", "Geomagnetic storm", "Jupiter" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map