language-icon Old Web
English
Sign In

Real number

In mathematics, a real number is a value of a continuous quantity that can represent a distance along a line. The adjective real in this context was introduced in the 17th century by René Descartes, who distinguished between real and imaginary roots of polynomials. The real numbers include all the rational numbers, such as the integer −5 and the fraction 4/3, and all the irrational numbers, such as √2 (1.41421356..., the square root of 2, an irrational algebraic number). Included within the irrationals are the transcendental numbers, such as π (3.14159265...). In addition to measuring distance, real numbers can be used to measure quantities such as time, mass, energy, velocity, and many more. In mathematics, a real number is a value of a continuous quantity that can represent a distance along a line. The adjective real in this context was introduced in the 17th century by René Descartes, who distinguished between real and imaginary roots of polynomials. The real numbers include all the rational numbers, such as the integer −5 and the fraction 4/3, and all the irrational numbers, such as √2 (1.41421356..., the square root of 2, an irrational algebraic number). Included within the irrationals are the transcendental numbers, such as π (3.14159265...). In addition to measuring distance, real numbers can be used to measure quantities such as time, mass, energy, velocity, and many more. Real numbers can be thought of as points on an infinitely long line called the number line or real line, where the points corresponding to integers are equally spaced. Any real number can be determined by a possibly infinite decimal representation, such as that of 8.632, where each consecutive digit is measured in units one tenth the size of the previous one. The real line can be thought of as a part of the complex plane, and complex numbers include real numbers. These descriptions of the real numbers are not sufficiently rigorous by the modern standards of pure mathematics. The discovery of a suitably rigorous definition of the real numbers—indeed, the realization that a better definition was needed—was one of the most important developments of 19th-century mathematics. The current standard axiomatic definition is that real numbers form the unique Dedekind-complete ordered field (R ; + ; · ; <), up to an isomorphism, whereas popular constructive definitions of real numbers include declaring them as equivalence classes of Cauchy sequences of rational numbers, Dedekind cuts, or infinite decimal representations, together with precise interpretations for the arithmetic operations and the order relation. All these definitions satisfy the axiomatic definition and are thus equivalent. The set of all real numbers is uncountable; that is: while both the set of all natural numbers and the set of all real numbers are infinite sets, there can be no one-to-one function from the real numbers to the natural numbers: the cardinality of the set of all real numbers (denoted c {displaystyle {mathfrak {c}}} and called cardinality of the continuum) is strictly greater than the cardinality of the set of all natural numbers (denoted ℵ 0 {displaystyle aleph _{0}} 'aleph-naught'). The statement that there is no subset of the reals with cardinality strictly greater than ℵ 0 {displaystyle aleph _{0}} and strictly smaller than c {displaystyle {mathfrak {c}}} is known as the continuum hypothesis (CH). It is known to be neither provable nor refutable using the axioms of Zermelo–Fraenkel set theory including the axiom of choice (ZFC), the standard foundation of modern mathematics, in the sense that some models of ZFC satisfy CH, while others violate it. Simple fractions were used by the Egyptians around 1000 BC; the Vedic 'Sulba Sutras' ('The rules of chords') in, c. 600 BC, include what may be the first 'use' of irrational numbers. The concept of irrationality was implicitly accepted by early Indian mathematicians since Manava (c. 750–690 BC), who were aware that the square roots of certain numbers such as 2 and 61 could not be exactly determined. Around 500 BC, the Greek mathematicians led by Pythagoras realized the need for irrational numbers, in particular the irrationality of the square root of 2. The Middle Ages brought the acceptance of zero, negative, integral, and fractional numbers, first by Indian and Chinese mathematicians, and then by Arabic mathematicians, who were also the first to treat irrational numbers as algebraic objects, which was made possible by the development of algebra. Arabic mathematicians merged the concepts of 'number' and 'magnitude' into a more general idea of real numbers. The Egyptian mathematician Abū Kāmil Shujā ibn Aslam (c. 850–930) was the first to accept irrational numbers as solutions to quadratic equations or as coefficients in an equation, often in the form of square roots, cube roots and fourth roots. In the 16th century, Simon Stevin created the basis for modern decimal notation, and insisted that there is no difference between rational and irrational numbers in this regard. In the 17th century, Descartes introduced the term 'real' to describe roots of a polynomial, distinguishing them from 'imaginary' ones. In the 18th and 19th centuries, there was much work on irrational and transcendental numbers. Johann Heinrich Lambert (1761) gave the first flawed proof that π cannot be rational; Adrien-Marie Legendre (1794) completed the proof, and showed that π is not the square root of a rational number. Paolo Ruffini (1799) and Niels Henrik Abel (1842) both constructed proofs of the Abel–Ruffini theorem: that the general quintic or higher equations cannot be solved by a general formula involving only arithmetical operations and roots.

[ "Discrete mathematics", "Algebra", "Mathematical analysis", "Combinatorics", "Imaginary number", "Nested intervals", "Examples of vector spaces", "Dense order", "Interval (mathematics)" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map