language-iconOld Web
English
Sign In

Background independence

Background independence is a condition in theoretical physics, that requires the defining equations of a theory to be independent of the actual shape of the spacetime and the value of various fields within the spacetime. In particular this means that it must be possible not to refer to a specific coordinate system—the theory must be coordinate-free. In addition, the different spacetime configurations (or backgrounds) should be obtained as different solutions of the underlying equations. Background independence is a condition in theoretical physics, that requires the defining equations of a theory to be independent of the actual shape of the spacetime and the value of various fields within the spacetime. In particular this means that it must be possible not to refer to a specific coordinate system—the theory must be coordinate-free. In addition, the different spacetime configurations (or backgrounds) should be obtained as different solutions of the underlying equations. Background independence is a loosely defined property of a theory of physics. Roughly speaking, it limits the number of mathematical structures used to describe space and time that are put in place 'by hand'. Instead, these structures are the result of dynamical equations, such as Einstein field equations, so that one can determine from first principles what form they should take. Since the form of the metric determines the result of calculations, a theory with background independence is more predictive than a theory without it, since the theory requires fewer inputs to make its predictions. This is analogous to desiring fewer free parameters in a fundamental theory. So background independence can be seen as extending the mathematical objects that should be predicted from theory to include not just the parameters, but also geometrical structures. Summarizing this, Rickles writes: 'Background structures are contrasted with dynamical ones, and a background independent theory only possesses the latter type—obviously, background dependent theories are those possessing the former type in addition to the latter type.' In general relativity, background independence is identified with the property that the metric of spacetime is the solution of a dynamical equation. In classical mechanics, this is not the case, the metric is fixed by the physicist to match experimental observations. This is undesirable, since the form of the metric impacts the physical predictions, but is not itself predicted by the theory. Manifest background independence is primarily an aesthetic rather than a physical requirement. It is analogous and closely related to requiring in differential geometry that equations be written in a form that is independent of the choice of charts and coordinate embeddings. If a background-independent formalism is present, it can lead to simpler and more elegant equations. However, there is no physical content in requiring that a theory be manifestly background-independent – for example, the equations of general relativity can be rewritten in local coordinates without affecting the physical implications. Although making a property manifest is only aesthetic, it is a useful tool for making sure the theory actually has that property. For example, if a theory is written in a manifestly Lorentz-invariant way, one can check at every step to be sure that Lorentz invariance is preserved. Making a property manifest also makes it clear whether or not the theory actually has that property. The inability to make classical mechanics manifestly Lorentz-invariant does not reflect a lack of imagination on the part of the theorist, but rather a physical feature of the theory. The same goes for making classical mechanics or electromagnetism background-independent.

[ "Relationship between string theory and quantum field theory", "Non-critical string theory", "String field theory", "Quantum field theory in curved spacetime" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map