language-iconOld Web
English
Sign In

Meganuclease

Meganucleases are endodeoxyribonucleases characterized by a large recognition site (double-stranded DNA sequences of 12 to 40 base pairs); as a result this site generally occurs only once in any given genome. For example, the 18-base pair sequence recognized by the I-SceI meganuclease would on average require a genome twenty times the size of the human genome to be found once by chance (although sequences with a single mismatch occur about three times per human-sized genome). Meganucleases are therefore considered to be the most specific naturally occurring restriction enzymes. Meganucleases are endodeoxyribonucleases characterized by a large recognition site (double-stranded DNA sequences of 12 to 40 base pairs); as a result this site generally occurs only once in any given genome. For example, the 18-base pair sequence recognized by the I-SceI meganuclease would on average require a genome twenty times the size of the human genome to be found once by chance (although sequences with a single mismatch occur about three times per human-sized genome). Meganucleases are therefore considered to be the most specific naturally occurring restriction enzymes. Among meganucleases, the LAGLIDADG family of homing endonucleases has become a valuable tool for the study of genomes and genome engineering over the past fifteen years. Meganucleases are 'molecular DNA scissors' that can be used to replace, eliminate or modify sequences in a highly targeted way. By modifying their recognition sequence through protein engineering, the targeted sequence can be changed. Meganucleases are used to modify all genome types, whether bacterial, plant or animal. They open up wide avenues for innovation, particularly in the field of human health, for example the elimination of viral genetic material or the 'repair' of damaged genes using gene therapy. Meganucleases are found in a large number of organisms – Archaea or archaebacteria, bacteria, phages, fungi, yeast, algae and some plants. They can be expressed in different compartments of the cell – the nucleus, mitochondria or chloroplasts. Several hundred of these enzymes have been identified.

[ "Transgene", "Homologous recombination", "Genome", "I-CreI", "Meganuclease I-SceI" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map