language-iconOld Web
English
Sign In

Semantic network

A semantic network, or frame network is a knowledge base that represents semantic relations between concepts in a network. This is often used as a form of knowledge representation. It is a directed or undirected graph consisting of vertices, which represent concepts, and edges, which represent semantic relations between concepts, mapping or connecting semantic fields. A semantic network, or frame network is a knowledge base that represents semantic relations between concepts in a network. This is often used as a form of knowledge representation. It is a directed or undirected graph consisting of vertices, which represent concepts, and edges, which represent semantic relations between concepts, mapping or connecting semantic fields. Typical standardized semantic networks are expressed as semantic triples. Semantic networks are used in natural language processing applications such as semantic parsing and word-sense disambiguation. 'Semantic Nets' were first invented for computers by Richard H. Richens of the Cambridge Language Research Unit in 1956 as an 'interlingua' for machine translation of natural languages. They were independently developed by Robert F. Simmons, Sheldon Klein, Karen McConologue, M. Ross Quillian and others at System Development Corporation in the early 1960s as part of the SYNTHEX project. It later featured prominently in the work of Allan M. Collins and Quillian (e.g., Collins and Quillian; Collins and Loftus Quillian). Later in 2006, Hermann Helbig fully described MultiNet. In the late 1980s, two Netherlands universities, Groningen and Twente, jointly began a project called Knowledge Graphs, which are semantic networks but with the added constraint that edges are restricted to be from a limited set of possible relations, to facilitate algebras on the graph. In the subsequent decades, the distinction between semantic networks and knowledge graphs was blurred. In 2012, Google gave their knowledge graph the name Knowledge Graph. The Semantic Link Network was systematically studied as a social semantics networking method. Its basic model consists of semantic nodes, semantic links between nodes, and a semantic space that defines the semantics of nodes and links and reasoning rules on semantic links. The systematic theory and model was published in 2004. This research direction can trace to the definition of inheritance rules for efficient model retrieval in 1998 and the Active Document Framework ADF. Since 2003, research has developed toward social semantic networking. This work is a systematic innovation at the age of the World Wide Web and global social networking rather than an application or simple extension of the Semantic Net (Network). Its purpose and scope are different from that of the Semantic Net (or network). The rules for reasoning and evolution and automatic discovery of implicit links play an important role in the Semantic Link Network. Recently it has been developed to support Cyber-Physical-Social Intelligence. It was used for creating a general summarization method. The self-organised Semantic Link Network was integrated with a multi-dimensional category space to form a semantic space to support advanced applications with multi-dimensional abstractions and self-organised semantic links It has been verified that Semantic Link Network play an important role in understanding and representation through text summarisation applications. To investigate special social semantics, competition relation and symbiosis relation as well as their roles in evolving society were studied More specialized forms of semantic networks has been created for specific use. For example, in 2008, Fawsy Bendeck's PhD thesis formalized the Semantic Similarity Network (SSN) that contains specialized relationships and propagation algorithms to simplify the semantic similarity representation and calculations.

[ "Information retrieval", "Data mining", "Artificial intelligence", "Natural language processing", "Linguistics", "SNePS", "semantic network array processor" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map