language-iconOld Web
English
Sign In

Coprinopsis cinerea

Coprinopsis cinerea is a species of mushroom in the family Psathyrellaceae. Commonly known as the gray shag, it is edible, but must be used promptly after collecting. Coprinopsis cinerea is an important model organism for studying fungal sex and mating types, mushroom development, and the evolution of multicellularity of fungi. The genome sequence was published in 2010. It is considered to be particularly suited organism to study meiosis, due to its synchronous meiotic development and prolonged prophase. Researchers in 2014 discovered a protein produced by Coprinopsis cinerea with antibiotic properties. The protein, known as copsin, has similar effects to other non-protein organically derived antibiotics. To date, it has not been determined whether antibiotic medicine for humans and other animals can be developed from this protein. Coprinopsis cinerea can be grown on complex (e.g. YMG, YMG/T) or minimal media (e.g. mKjalke medium), solid or liquid, with or without agitation, at 25 °C or optimally at 37 °C. It can be grown in dark or with 12-h light/12-h dark cycle. Coprinopsis cinerea strain Okayama 7 (#130) was sequenced with 10x coverage in 2003. A third and most recent revision of the sequence of strain Okayama 7 (#130) was released in 2010. Its haploid genome is ca. 37.5 Mb. Coprinopsis cinerea can be transformed with exogenous DNA by transformation when the fungus is a protoplast. It was found that disrupting (knockout or RNAi silencing) ku70 homologue can increase gene targeting via increased homologous recombination. Either protoplasts derived from oidia or vegetative mycelium can be used, however, gene targeting was found to be higher by 2% (based on phenotyping) when using vegetative mycelium. Otherwise, insertion of integrative vectors ectopically and with small homologous regions can be used, likely with low transformation efficiency. Earlier, REMI (restriction enzyme-mediated integration) could be used to insert exogenous DNA into the chromosome to produce mutant strains. This relies on inserting exogenous DNA and restriction enzymes into the protoplast cell, allowing for the enzymes to cut the chromosome at specific sites which match those sites used to produce linearized plasmid DNA with the gene of interest; subsequently, host enzymes ligate the cut sites and thus produce integrated heterologous, exogenous DNA. Although successful, undesirable mutations are likely. Chemical mutagenesis (also random) can also be done. Phenotype selection of the inability to fruit can indict that insertion led to disruption of vital genes. All in all, homologous recombination provides more specificity when creating a mutant strain. Depending on the mutant, auxotrophy markers (requires lost gene to be inserted) or prototrophy (when causing essential gene deletion) be used for selection. Coprinopsis cinerea is known to produce laccase, a type of phenoloxidase. C. cinerea produces a variety of the same laccase, known as isoenzymes. Laccase activity can be measured by zymograms (in which a substrate for the enzyme is present in a separating gel). Under stressed conditions, temperature and medium, laccase secretion was increased. Although copper is required co-factor for laccase, merely adding copper did not induce laccase secretion. It was recently found that a TET (Ten-Eleven translocation dioxygenases) homologue, CcTET, was identified in C. cinerea, which may have important human (or mammalian) implications like cancer. DNA methylation is vital in humans and dysfunction is associated with cancer, thus, studying methylation reactions in non-mammalians may provide better insight into mammalian methylation reactions. Coprinopsis cinerea can sense blue light. It was identified that gene Cc.wc-2 is involved in blue light photoreception. Etiolated stipes (elongation without cap maturation) is caused when grown without light.

[ "Gene", "Enzyme", "Mushroom", "Marasmius rotula" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map