language-iconOld Web
English
Sign In

Sea-surface height

Ocean surface topography or sea surface topography, also called ocean dynamic topography, are highs and lows on the ocean surface, similar to the hills and valleys of Earth's land surface depicted on a topographic map. These variations are expressed in terms of average sea surface height (SSH) relative to the Earth's geoid. The main purpose of measuring ocean surface topography is to understand the large-scale ocean circulation. Ocean surface topography or sea surface topography, also called ocean dynamic topography, are highs and lows on the ocean surface, similar to the hills and valleys of Earth's land surface depicted on a topographic map. These variations are expressed in terms of average sea surface height (SSH) relative to the Earth's geoid. The main purpose of measuring ocean surface topography is to understand the large-scale ocean circulation. Unaveraged or instantaneous sea surface height (SSH) is most obviously affected by the tidal forces of the Moon and the Sun acting on the Earth. Over longer timescales, SSH is influenced by ocean circulation. Typically, SSH anomalies resulting from these forces differ from the mean by less than ±1 m (3 ft) at the global scale. Other influences include temperature, salinity, tides, waves, and the loading of atmospheric pressure. The slowest and largest variations are due to changes in the Earth's gravitational field (geoid) due to the rearrangement of continents, formation of sea mounts and other redistribution of rock. Since the Earth's gravitational field is relatively stable on decadal to centennial timescales, ocean circulation plays a more significant role in the observed variation of SSH. Across the seasonal cycle changes in patterns of warming, cooling and surface wind forcing affect circulation and influence SSH. Variations in SSH can be measured by satellite altimetry (e.g. TOPEX/Poseidon) and used to determine sea level rise and properties such as ocean heat storage. Ocean surface topography is used to map ocean currents, which move around the ocean's 'hills' and 'valleys' in predictable ways. A clockwise sense of rotation is found around 'hills' in the northern hemisphere and 'valleys' in the southern hemisphere. This is because of the Coriolis effect. Conversely, a counterclockwise sense of rotation is found around 'valleys' in the northern hemisphere and 'hills' in the southern hemisphere. Ocean surface topography is also used to understand how the ocean moves heat around the globe, a critical component of Earth's climate, and for monitoring changes in global sea level. The collection of the data is useful for the long-term information about the ocean and its currents. According to NASA science this data can also be used to provide understanding of weather, climate, navigation, fisheries management, and offshore operations. Observations made about the data are used to study the oceans tides, circulation, and the amount of heat the ocean contains. These observations can help predict short and long term effects of the weather and the earth’s climate over time. The sea surface height (SSH) is calculated through altimetry satellites, which determine the distance from the satellite to a target surface by measuring the satellite-to-surface round-trip time of a radar pulse. The satellites then measure the distance between their orbit altitude and the surface of the water. Due to the differing depths of the ocean, an approximation is made. This is called the Arbitrary Reference Surface. Arbitrary Reference Surface is an estimated surface that is calculated to factor in the shape of the Earth. The general shape of the earth is spherical, but flattened out at the North and South Pole. This approximated surface is called the reference ellipsoid. This enables data to be taken precisely due to the uniform surface level. The satellite’s altitude then has to be calculated with respect to the reference ellipsoid. It is calculated using the orbital parameters of the satellite and various positioning instruments. The sea surface height is then the difference between the satellite’s altitude relative to the reference ellipsoid and the altimeter range. The satellite sends microwave pulses to the ocean surface. The travel time of the pulses ascending to the oceans surface and back provides data of the sea surface height. In the image below you can see the measurement system using by the satellite Jason-1. Currently there are two different satellites calculating the earth ocean topography, Jason-1, and Jason-2. These two satellites are currently both in space orbiting Earth in a tandem rotation. They are approximately 330 kilometers apart. Ocean surface topography can be derived from ship-going measurements of temperature and salinity at depth. However, since 1992, a series of satellite altimetry missions, beginning with TOPEX/Poseidon and continued with Jason-1 and the Ocean Surface Topography Mission on the Jason-2 satellite have measured sea surface height directly. By combining these measurements with gravity measurements from NASA's Grace mission, scientists can determine sea surface topography to within a few centimeters. Jason-1 was launched by a Boeing Delta II rocket in California in 2001 and continued measurements initially collected by TOPEX/Poseidon satellite, which orbited from 1992 up until 2006. NASA and CNES, a French space agency, are joint partners in this mission.

[ "Altimeter", "Satellite", "Sea surface temperature" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map