language-iconOld Web
English
Sign In

Levels-of-processing effect

The levels-of-processing effect, identified by Fergus I. M. Craik and Robert S. Lockhart in 1972, describes memory recall of stimuli as a function of the depth of mental processing. Deeper levels of analysis produce more elaborate, longer-lasting, and stronger memory traces than shallow levels of analysis. Depth of processing falls on a shallow to deep continuum. Shallow processing (e.g., processing based on phonemic and orthographic components) leads to a fragile memory trace that is susceptible to rapid decay. Conversely, deep processing (e.g., semantic processing) results in a more durable memory trace. The levels-of-processing effect, identified by Fergus I. M. Craik and Robert S. Lockhart in 1972, describes memory recall of stimuli as a function of the depth of mental processing. Deeper levels of analysis produce more elaborate, longer-lasting, and stronger memory traces than shallow levels of analysis. Depth of processing falls on a shallow to deep continuum. Shallow processing (e.g., processing based on phonemic and orthographic components) leads to a fragile memory trace that is susceptible to rapid decay. Conversely, deep processing (e.g., semantic processing) results in a more durable memory trace. This theory contradicts the multi-store Atkinson-Shiffrin memory model which represents memory strength as being continuously variable, the assumption being that rehearsal always improves long-term memory. They argued that rehearsal that consists simply of repeating previous analyses (maintenance rehearsal) doesn't enhance long-term memory. In a study from 1975 (Craik and Tulving) participants were given a list of 60 words. Each word was presented along with three questions. The participant had to answer one of them. Those three questions were in one of three categories. One category of questions was about how the word was presented visually ('Is the word shown in italics?'). The second category of questions was about the phonemic qualities of the word ('Does the word begin with the sound 'bee'?'). The third category of questions was presented so that the reader was forced to think about the word within a certain context. ('Can you meet one in the street '?) The result of this study showed that the words which contained deep processing (the latter) were remembered better. Familiarity, transfer-appropriate processing, the self-reference effect, and the explicit nature of a stimulus modify the levels-of-processing effect by manipulating mental processing depth factors. A stimulus will have a higher recall value if it is highly compatible with preexisting semantic structures (Craik, 1972). According to semantic network theories, this is because such a stimulus will have many connections to other encoded memories, which are activated based on closeness in semantic network structure. This activation increases cognitive analysis, increasing the strength of the memory representation. The familiarity modifier has been tested in implicit memory experiments, where subjects report false memories when presented with related stimuli. Specificity of processing describes the increased recall value of a stimulus when presented in the method with which it was inputted. For example, auditory stimuli (spoken words and sounds) have the highest recall value when spoken, and visual stimuli have the highest recall value when a subject is presented with images. In writing tasks, words are recalled most effectively with semantic cues (asking for words with a particular meaning) if they are encoded semantically (self-generated by the subject as being related to a particular meaning). Words are recalled most effectively with data-driven cues (word completion) if they are read, rather than generated by a subject. Levels of processing have been an integral part of learning about memory. The self-reference effect describes the greater recall capacity for a particular stimulus if it is related semantically to the subject. This can be thought of as a corollary of the familiarity modifier, because stimuli specifically related to an event in a person's life will have widespread activation in that person's semantic network. For example, the recall value of a personality trait adjective is higher when subjects are asked whether the trait adjective applies to them than when asked whether trait adjective has a meaning similar to another trait. Implicit memory tests, in contrast with explicit memory tests, measure the recall value of a particular stimulus based on later performance on stimulus-related tasks. During these tasks, the subject does not explicitly recall the stimulus, but the previous stimulus still affects performance. For example, in a word-completion implicit memory task, if a subject reads a list containing the word 'dog', the subject provides this word more readily when asked for three-letter words beginning in 'd'. The levels-of-processing effect is only found for explicit memory tests. One study found that word completion tasks were unaffected by levels of semantic encodings achieved using three words with various levels of meaning in common. Another found that typical level-of-processing effects are reversed in word completion tasks; subjects recalled pictures pairs more completely if they were shown a word representing a picture rather than asked to rate a picture for pleasantness (semantic encoding). Typical level-of-processing theory would predict that picture encodings would create deeper processing than lexical encoding. 'Memory over the short term and the long term has been thought to differ in many ways in terms of capacity, the underlying neural substrates, and the types of processes that support performance.'

[ "Recall", "Encoding (memory)", "Cognition" ]
Parent Topic
Child Topic
    No Parent Topic
Baidu
map