Kidney function and obstructive lung disease: a bidirectional Mendelian randomisation study

2021
BACKGROUND Additional study is warranted to investigate the causal effects between kidney function and obstructive lung disease. METHODS This study was a bidirectional two-sample Mendelian randomisation (MR) analysis. The CKDGen genome-wide association study (GWAS) meta-analysis for estimated glomerular filtration rate (eGFR) including individuals of European ancestry (N=567 460) provided the genetic instrument for kidney function and outcome summary statistics. A GWAS for FEV1/FVC including individuals of European ancestry from the UK Biobank (N=321 047) provided the genetic instrument for FEV1/FVC and outcome data. A polygenic score (PGS) analysis was performed to test the causal estimates from kidney function to binary obstructive lung disease outcomes, including chronic obstructive pulmonary disease (COPD), asthma, and FEV1/FVC<70%, and to perform non-linear MR with individual-level UK Biobank data. RESULTS The causal estimates by summary-level MR indicated that genetically predicted increased kidney function was significantly associated with increased FEV1/FVC Z scores [10% increase in eGFR, beta 0.055 (0.024, 0.086)]. The PGS for increased eGFR showed a significant association with a reduced risk of FEV1/FVC<70% [OR 0.93 (0.87, 0.99)], COPD [OR 0.93 (0.87, 0.99)] and late-onset (≥50 years old) asthma [OR 0.93 (0.88, 0.99)]. The non-linear MR demonstrated that the causal effect from eGFR to FEV1/FVC was apparent in eGFR ranges lower than 60 mL/min/1.73 m2. On the other hand, genetically predicted FEV1/FVC showed nonsignificant causal estimates of eGFR change [beta 0.568% (-0.458, 1.605%)]. CONCLUSION This study supports kidney function impairment would be a causative factor for obstructive lung disease.
    • Correction
    • Source
    • Cite
    • Save
    0
    References
    2
    Citations
    NaN
    KQI
    []
    Baidu
    map