Study of TeV shell supernova remnants at gamma-ray energies

2015
Context. The breakthrough developments of Cherenkov telescopes in the past decade have led to angular resolution of 0.1◦ and an unprecedented sensitivity. This has allowed the current generation of Cherenkov telescopes (H.E.S.S., MAGIC, and VERITAS) to discover a population of supernova remnants (SNRs) radiating in very-high-energy (VHE; E > 100 GeV) γ-rays. A number of those VHE SNRs exhibit a shell-type morphology that is spatially coincident with the shock front of the SNR. Aims. The members of this VHE shell SNR club are RX J1713.7−3946, RX J0852.0−4622, RCW 86, SN 1006, and HESS J1731−347. The last two objects have been poorly studied in high-energy (HE; 0.1 5σ. Results. With this Fermi analysis, we now have a complete view of the HE to VHE γ-ray emission of TeV shell SNRs. All five sources have a hard HE photon index (Γ < 1.8), which suggests a common scenario where the bulk of the emission is produced by accelerated electrons radiating from radio to VHE γ-rays through synchrotron and inverse Compton processes. In addition when correcting for the distance, all SNRs show a surprisingly similar γ-ray luminosity supporting the idea of a common emission mechanism. While the γ-ray emission is likely to be leptonic-dominated at the scale of the whole SNR, this does not rule out efficient hadron acceleration in those objects.
    • Correction
    • Source
    • Cite
    • Save
    74
    References
    52
    Citations
    NaN
    KQI
    []
    Baidu
    map