Re-evaluation of the ¹⁶O(n, γ)¹⁷O cross section at astrophysical energies and its role as a neutron poison in the s-process

2016 
The doubly magic nucleus ¹⁶O has a small neutron-capture cross section of just a few tens of microbarns in the astrophysical energy region. Despite this, ¹⁶O plays an important role as a neutron poison in the astrophysical slow neutron capture (s) process due to its high abundance. We present in this paper a re-evaluation of the available experimental data for ¹⁶O(n, γ)¹⁷O and derive a new recommendation for the Maxwellian-averaged cross sections between kT = 5 and 100 keV. Our new recommendations are lower up to kT = 60 keV compared to the previously recommended values but up to 14% higher at kT = 100 keV. We explore the impact of this different energy dependence on the weak s-process during core helium burning (kT = 26 keV) and shell carbon burning (kT = 90 keV) in massive stars where ¹⁶O is the most abundant isotope.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    10
    Citations
    NaN
    KQI
    []
    Baidu
    map