Data on the fabrication of hybrid calix [4]arene-modified natural bentonite clay for efficient selective removal of toxic metals from wastewater at room temperature.

2021
Abstract Fresh water resources on the earth are less than 0.2 %; meanwhile, around 80 % of the freshwater is consumed daily in agriculture, industries, and household activities.[ 1 , 2 ] There is an essential need to develop efficient adsorbents for wastewater treatment. 1 , 2 , 3 , 4 , 5 , 6 , in this regards, hereafter we present the rationale synthesis and characterization of hybrid natural bentonite clay modified with Calix [4] arene (denoted as B-S-Calix) as efficient adsorbents for toxic metals from wastewater. This is driven by the facile photo-radical thiol-yne addition among the thiolated clay and an alkynylated calix[4]arene. The morphology, surface modifications, and Thermal degradation of B, B-S, and B-S-Calix were investigated using TEM, FTIR, and TGA techniques. The adsorption performance of B, BS and B-S-Calix towards toxic metals including cadmium (II) ion [Cd (II)], zinc (II) ion [Zn(II)], lead(II) ion [Pb(II)], strontium(II) ion [Sr (II)], cobalt(II) ion [Co (II)], copper(II) ion [Cu(II)], and mercury (II) ion [Hg(II)] from wastewater were benchmarked 25 °C. These data are related to the article entitled “hybrid Clay/Calix[4]arene Calix[4]arene-clicked clay through thiol-yne addition for the molecular recognition and removal of Cd(II) from wastewater’’ [7] .
    • Correction
    • Source
    • Cite
    • Save
    15
    References
    1
    Citations
    NaN
    KQI
    []
    Baidu
    map