On the accuracy and precision of PLANET for multiparametric MRI using phase-cycled bSSFP imaging

2019 
PURPOSE: In this work we demonstrate how sequence parameter settings influence the accuracy and precision in T1 , T2 , and off-resonance maps obtained with the PLANET method for a single-component signal model. In addition, the performance of the method for the particular case of a two-component relaxation model for white matter tissue was assessed. METHODS: Numerical simulations were performed to investigate the influence of sequence parameter settings on the accuracy and precision in the estimated parameters for a single-component model, as well as for a two-component white matter model. Phantom and in vivo experiments were performed for validation. In addition, the effects of Gibbs ringing were investigated. RESULTS: By making a proper choice for sequence parameter settings, accurate and precise parameter estimation can be achieved for a single-component signal model over a wide range of relaxation times at realistic SNR levels. Due to the presence of a second myelin-related signal component in white matter, an underestimation of approximately 30% in T1 and T2 was observed, predicted by simulations and confirmed by measurements. Gibbs ringing artifacts correction improved the precision and accuracy of the parameter estimates. CONCLUSION: For a single-component signal model there is a broad "sweet spot" of sequence parameter combinations for which a high accuracy and precision in the parameter estimates is achieved over a wide range of relaxation times. For a multicomponent signal model, the single-component PLANET reconstruction results in systematic errors in the parameter estimates as expected.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    13
    Citations
    NaN
    KQI
    []
    Baidu
    map