The MHC Class I Cancer-Associated Neoepitope Trh4 Linked with Impaired Peptide Processing Induces a Unique Noncanonical TCR Conformer

2016
MHC class Idownregulation represents a significant challenge for successful T cell–based immunotherapy. T cell epitopes associated with impaired peptide processing (TEIPP) constitute a novel category of immunogenic Ags that are selectively presented on transporter associated with Ag processing–deficient cells. The TEIPP neoepitopes are CD8 T cell targets, derived from nonmutated self-proteinsthat might be exploited to prevent immune escape. In this study, the crystal structure of H-2Db in complex with the first identified TEIPP Ag (MCLRMTAVM) derived from the Trh4 protein has been determined to 2.25 A resolution. In contrast to prototypic H-2Db peptides, Trh4 takes a noncanonical peptide-binding pattern with extensive sulfur–π interactions that contribute to the overall complex stability. Importantly, the noncanonical methionine at peptide position 5 acts as a main anchor, altering only the conformation of the H-2Db residues Y156 and H155 and thereby forming a unique MHC/peptide conformer that is essential for recognition by TEIPP-specific T cells. Substitution of peptide residues p2C and p5M to the conservative α-aminobutyric acid and norleucine, respectively, significantly reduced complex stability, without altering peptide conformation or T cell recognition. In contrast, substitution of p5M to a conventional asparagine abolished recognition by the H-2Db/Trh4-specific T cell clone LnB5. We anticipate that the H-2Db/Trh4 complex represents the first example, to our knowledge, of a broader repertoire of alternative MHC class Ibinders.
    • Correction
    • Source
    • Cite
    • Save
    42
    References
    9
    Citations
    NaN
    KQI
    []
    Baidu
    map