Evolution of the scattering properties of phytoplankton cells from flow cytometry measurements.

2017
After the exponential growth phase, variability in the scattering efficiency of phytoplanktoncells over their complete life cycle is not well characterised. Bulk measurements are impacted by senescent cells and detritrus. Thus the analysis of the evolution of the optical properties thanks to their morphological and/or intra-cellular variations remains poorly studied. Using the Cytosense flow cytometer (CytoBuoy b.v., NL), the temporal course of the forward and sideward efficiencies of two phytoplanktonspecies ( Thalassiosira pseudonanaand Chlamydomonasconcordia) were analyzed during a complete life-cycle. These two species differ considerably from a morphological point of view. Over the whole experiment, the forward and sideward efficiencies of Thalassiosira pseudonanawere, on average, respectively 2.2 and 1.6 times higher than the efficiencies of Chlamydomonasconcordia. Large intra-species variability of the efficiencies were observed over the life cycle of the considered species. It highlights the importance of considering the optical properties of phytoplanktoncells as a function of the population growth stage of the considered species. Furthermore, flow cytometry measurements were combined with radiative transfer simulations and biogeochemical and optical measurements. Results showed that the real refractive index of the chloroplast is a key parameter driving the sideward signal and that a simplistic two-layered model (cytoplasm-chloroplast) seems particularly appropriate to represent the phytoplanktoncells.
    • Correction
    • Source
    • Cite
    • Save
    58
    References
    8
    Citations
    NaN
    KQI
    []
    Baidu
    map