Design, synthesis and biological activities of benzo[d]imidazo[1,2-a]imidazole derivatives as TRPM2-specfic inhibitors.

2021
Transient receptor potential melastatin 2 (TRPM2) channel is associated with ischemia/reperfusion injury, inflammation, cancer and neurodegenerative diseases. However, the lack of specific inhibitors impedes the development of TRPM2 targeted therapeutic agents. To develop a selective TRPM2 inhibitor, three-dimensional similarity-based screening strategy was employed using the energy-minimized conformation of non-selective TRPM2 inhibitor 2-APB as the query structure, which resulted in the discovery of a novel tricyclic TRPM2 inhibitor Z-4 with benzo[d]imidazo[1,2-a]imidazole skeleton. A series of Z-4 derivatives were subsequently synthesized and evaluated using calcium imaging and electrophysiology approaches. Among them, preferred compounds ZA10 and ZA18 inhibited the TRPM2 channel with micromolar half-maximal inhibitory concentration values and exhibited TRPM2 selectivity over the TRPM8 channel, TRPV1 channel, InsP3 receptor and Orai channel. The analysis of structure-activity relationship provides valuable insights for further development of selective TRPM2 inhibitors. Neuroprotection assay showed that ZA10 and ZA18 could effectively reduce the mortality of SH-SY5Y cells induced by H2O2. These findings enrich the structure types of existing TRPM2 inhibitors and might provide a new tool for the study of TRPM2 function in Reactive oxygen species (ROS) -related diseases.
    • Correction
    • Source
    • Cite
    • Save
    46
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map