Azurin-Derived Peptides: Comparison of Nickel- and Copper-Binding Properties.

2021
Metalloproteins are an important class of proteins involved in metal uptake, transport, and electron-transfer reactions. Mimicking the active sites of these proteins through miniaturization is an active area of research with applications in biotechnology and medicine. Azurin is a 128-residue copper-binding cupredoxin protein involved in electron-transfer reactions. Previous studies have reported on the copper-binding-induced spectroscopic and structural properties of peptide loops (11 and 13 residues) from azurin. These azurin peptides exhibited novel stoichiometries. However, the underlying mechanism of fluorescence quenching upon copper binding remains to be understood, whether it is due to electron transfer, energy transfer, or both. Here, we report nickel-binding-associated spectroscopic and structural properties of the azurin peptides. They develop a β-turn upon nickel binding as seen in circular dichroism and exhibit electronic transitions centered at 270 and 450 nm. Unlike copper, which exhibited 1:1 and 1:2 peptide:metal stoichiometries, nickel exhibited only a 1:1 stoichiometry. Tryptophan-containing peptides showed fluorescence quenching upon nickel binding, which is due to electron transfer. These results further suggest that the quenching in copper-bound peptides is also due to electron transfer, which could not be ascertained in previous studies. Overall, azurin peptides provide a platform for studying metal-induced structural and spectroscopic properties using transition-metal ions.
    • Correction
    • Source
    • Cite
    • Save
    30
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map