Direct observation of interstitial dislocation loop coarsening in α-iron.

2013
: Interstitial loop coarsening by Ostwald ripening can provide insight into single point defects but is very difficult to observe in α-iron and many other metals where nanoscale vacancy clusters dissociate and annihilate loops. We show that by implanting helium in the samples at a carefully chosen energy, it is possible to observe Ostwald ripening of loops by transmission electron microscopy during in situ isochronal annealings. This coarsening of loops results in a sharp increase of the mean loop radius at around 850 K. Using cluster dynamics simulations, we demonstrate that loops evolve due to vacancy emission and that such experiments give a robust estimation of the sum of the formation and migration free energies of vacancies. In particular, our results are in good agreement with self-diffusion experiments and confirm that entropic contributions are large for the vacancy in α-iron.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    22
    Citations
    NaN
    KQI
    []
    Baidu
    map