Phenotype-guided subpopulation identification from single-cell sequencing data

2020
Single-cell sequencing yields novel discoveries by distinguishing cell types, states and lineages within the context of heterogeneous tissues. However, interpreting complex single-cell data from highly heterogeneous cell populations remains challenging. Currently, most existing single-cell data analyses focus on cell type clusters defined by unsupervised clustering methods, which cannot directly link cell clusters with specific biological and clinical phenotypes. Here we present Scissor, a novel approach that utilizes disease phenotypes to identify cell subpopulations from single-cell data that most highly correlate with a given phenotype. This phenotype-to-cell within a single step strategy enables the utilization of a large amount of clinical information that has been collected for bulk assays to identify the most highly phenotype-associated cell subpopulations. When applied to a lung cancer single-cell RNA-seq (scRNA-seq) dataset, Scissor identified a subset of cells exhibiting high hypoxia activities, which predicted worse survival outcomes in lung cancer patients. Furthermore, in a melanoma scRNA-seq dataset, Scissor discerned a T cell subpopulation with low PDCD1/CTLA4 and high TCF7 expressions, which is associated with a favorable immunotherapy response. Thus, Scissor provides a novel framework to identify the biologically and clinically relevant cell subpopulations from single-cell assays by leveraging the wealth of phenotypes and bulk-omics datasets.
    • Correction
    • Source
    • Cite
    • Save
    59
    References
    2
    Citations
    NaN
    KQI
    []
    Baidu
    map