Extracting Bigravity from String Theory

2021 
The origin of the graviton from string theory is well understood: it corresponds to a massless state in closed string spectra, whose low-energy effective action, as extracted from string scattering amplitudes, is that of Einstein-Hilbert. In this work, we explore the possibility of such a string-theoretic emergence of ghost-free bimetric theory, a recently proposed theory that involves two dynamical metrics, that around particular backgrounds propagates the graviton and a massive spin-2 field, which has been argued to be a viable dark matter candidate. By choosing to identify the latter with a massive spin-2 state of open string spectra, we compute tree-level three-point string scattering amplitudes that describe interactions of the massive spin-2 with itself and with the graviton. With the mass of the external legs depending on the string scale, we discover that extracting the corresponding low-energy effective actions in four spacetime dimensions is a subtle but consistent process and proceed to appropriately compare them with bimetric theory. Our findings consist in establishing that there can be a match between the string and the bimetric theory prediction in the case of two-derivative interactions of the graviton with two massive spin-2 states, unlike massive spin-2 cubic self-interactions, a fact that we analyze and interpret. We conclude with a mention of future investigations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    89
    References
    3
    Citations
    NaN
    KQI
    []
    Baidu
    map