Genetic Single Neuron Anatomy reveals fine granularity of cortical interneuron subtypes

2017
Parsing diverse nerve cells into biological types is necessary for understanding neural circuit organization. Morphology is an intuitive criterion for neuronal classification and a proxy of connectivity, but morphological diversity and variability often preclude resolving the granularity of discrete cell groups from population continuum. Combining genetic labeling with high-resolution, large volume light microscopy, we established a platform of genetic single neuron anatomy that resolves, registers and quantifies complete neuron morphologies in the mouse brain. We discovered that cortical axo-axonic cells (AACs), a cardinal GABAergic interneurontype that controls pyramidal neuron (PyN) spiking at axon initial segment, consist of multiple subtypes distinguished by laminar position, dendritic and axonal arborization patterns. Whereas the laminar arrangements of AAC dendrites reflect differential recruitment by input streams, the laminar distribution and local geometry of AAC axons enable differential innervation of PyN ensembles. Therefore, interneurontypes likely consist of fine-grained subtypes with distinct input-output connectivity patterns.
    • Correction
    • Source
    • Cite
    • Save
    48
    References
    1
    Citations
    NaN
    KQI
    []
    Baidu
    map