Herschel map of Saturn's stratospheric water, delivered by the plumes of Enceladus

2019
Context. The origin of water in the stratospheresof Giant Planetshas been an outstanding question ever since its first detection by ISO some 20 years ago. Water can originate from interplanetary dust particles, icy rings and satellites and large comet impacts. Analysis of Herschel Space Observatoryobservations have proven that the bulk of Jupiter's stratosphericwater was delivered by the Shoemaker-Levy 9 impacts in 1994. In 2006, the Cassini mission detected water plumes at the South Pole of Enceladus, placing the moon as a serious candidate for Saturn's stratosphericwater. Further evidence was found in 2011, when Herschel demonstrated the presence of a water torus at the orbital distance of Enceladus, fed by the moon's plumes. Finally, water falling from the rings onto Saturn's uppermost atmospheric layers at low latitudes was detected during the final orbits of Cassini's end-of-mission plunge into the atmosphere. Aims. In this paper, we use Herschel mapping observations of water in Saturn's stratosphereto identify its source. Methods. Several empirical models are tested against the Herschel-HIFI and -PACS observations, which were collected on December 30, 2010, and January 2nd, 2011 (respectively). Results. We demonstrate that Saturn's stratosphericwater is not uniformly mixed as a function of latitude, but peaking at the equator and decreasing poleward with a Gaussian distribution. We obtain our best fit with an equatorial mole fraction 1.1 ppb and a half-width at half-maximum of 25°, when accounting for a temperature increase in the two warm stratosphericvortices produced by Saturn's Great Storm of 2010-2011. Conclusions. This work demonstrates that Enceladusis the main source of Saturn's stratosphericwater.
    • Correction
    • Source
    • Cite
    • Save
    110
    References
    2
    Citations
    NaN
    KQI
    []
    Baidu
    map