Phenotypic diversity created by a transposable element increases productivity and resistance to competitors in plant populations

2021
An accumulating body of evidence indicates that natural plant populations harbour a large diversity of transposable elements (TEs). TEs provide genetic and epigenetic variation that can substantially translate into changes in plant phenotypes. Despite the wealth of data on the ecological and evolutionary effects of TEs on plant individuals, we have virtually no information on the role of TEs on populations and ecosystem functioning. On the example of Arabidopsis thaliana, we demonstrate that TE-generated variation creates differentiation in ecologically important functional traits. In particular, we show that Arabidopsis populations with increasing diversity of individuals differing in copy numbers of the ONSEN retrotransposon had higher phenotypic and functional diversity. Moreover, increased diversity enhanced population productivity and reduced performance of interspecific competitors. We conclude that TE-generated diversity can have similar effects on ecosystem as usually documented for other biological diversity effects.
    • Correction
    • Source
    • Cite
    • Save
    49
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map