Validation of the Sentinel-5 Precursor TROPOMI cloud data with Cloudnet, Aura OMI O 2 -O 2 , MODIS and Suomi-NPP VIIRS

2020
Abstract. Accurate knowledge of cloud properties is essential to the measurement of atmospheric composition from space. In this work we assess the quality of the cloud data derived from Copernicus Sentinel-5 Precursor (S5P) TROPOMI radiance measurements: cloud top height and cloud optical thickness (retrieved with the S5P OCRA/ROCINN_CAL algorithm), cloud height (S5P OCRA/ROCINN_CRB and S5P FRESCO) and radiometric cloud fraction (all three algorithms). The analysis combines: (i) the examination of cloud maps for artificial geographical patterns, (ii) the comparison to other satellite cloud data (MODIS, NPP-VIIRS and OMI O2-O2), and (iii) ground-based validation with respect to correlative observations (2018-04-30 to 2020-02-27) from the CLOUDNET network of ceilometers, lidars and radars. Peculiar geographical patterns were identified, and will be mitigated in future releases of the cloud data products. Zonal mean latitudinal variation of S5P cloud properties are similar to that of other satellite data. S5P OCRA/ROCINN_CAL agrees well with NPP VIIRS cloud top height and cloud optical thickness, and with CLOUDNET cloud top height, especially for the low (mostly liquid) clouds. For the high clouds, S5P OCRA/ROCINN_CAL cloud top height is below the cloud top height of VIIRS and of CLOUDNET, while its cloud optical thickness is higher than that of VIIRS. S5P OCRA/ROCINN_CRB and S5P FRESCO cloud height are well below the CLOUDNET cloud mean height for the low clouds, but match on an average better with the CLOUDNET cloud mean height for the higher clouds. As opposed to S5P OCRA/ROCINN_CRB and S5P FRESCO, S5P OCRA/ROCINN_CAL is well able to match the lowest CTH mode of the CLOUDNET observations.
    • Correction
    • Source
    • Cite
    • Save
    51
    References
    8
    Citations
    NaN
    KQI
    []
    Baidu
    map